1,068 research outputs found

    Self-regulation in interpersonal interactions: Two regulatory selves at work

    Get PDF
    Lange, P.A.M. van [Promotor]Finkenauer, C. [Copromotor

    Performance evaluation of Attribute-Based Encryption on constrained IoT devices

    Get PDF
    The Internet of Things (IoT) is enabling a new generation of innovative services based on the seamless integration of smart objects into information systems. This raises new security and privacy challenges that require novel cryptographic methods. Attribute-Based Encryption (ABE) is a type of public-key encryption that enforces a fine-grained access control on encrypted data based on flexible access policies. The feasibility of ABE adoption in fully-fledged computing systems, i.e., smartphones or embedded systems, has been demonstrated in recent works. In this paper, we consider IoT devices characterized by strong limitations in terms of computing, storage, and power. Specifically, we assess the performance of ABE in typical IoT constrained devices. We evaluate the performance of three representative ABE schemes configured considering the worst-case scenario on two popular IoT platforms, namely ESP32 and RE-Mote. Our results show that, if we assume to employ up to 10 attributes in ciphertexts and to leverage hardware cryptographic acceleration, then ABE can indeed be adopted on devices with very limited memory and computing power, while obtaining a satisfactory battery lifetime. In our experiments, as also performed in other works in the literature, we consider only the worst-case configuration, which, however, might not be completely representative of the real working conditions of sensors employing ABE. For this reason, we complete our evaluation by proposing a novel benchmark method that we used to complement the experiments by evaluating the average performance. We show that by always considering the worst case, the current literature significantly overestimates the processing time and the energy consumption

    Evaluation of Feasibility and Impact of Attacks against the 6top Protocol in 6TiSCH Networks

    Get PDF
    The 6TiSCH architecture has been gaining attraction as a promising solution to ensure reliability and security for communication in applications for the Industrial Internet of Things (IIoT). While many different aspects of the architecture have been investigated in literature, an in-depth analysis of the security features included in its design is still missing. In this paper, we assess the security vulnerabilities of the 6top protocol, a core component of the 6TiSCH architecture for enabling network nodes to negotiate communication resources. Our analysis highlights two possible attacks against the 6top protocol that can impair network performance and reliability in a significant manner. To prove the feasibility of the attacks in practice, we implemented both of them on the Contiki-NG Operating System and tested their effectiveness on a simple deployment with three Zolertia RE-Mote sensor nodes. Also, we carried out a set of simulations using Cooja in order to assess their impact on larger networks. Our results show that both attacks reduce reliability in the overall network and increase energy consumption of the network nodes

    Wavelet analysis of the LF radio signals collected by the European VLF/LF network from July 2009 to April 2011

    Get PDF
    In 2008, a radio receiver that works in very low frequency (VLF; 20-60 kHz) and LF (150-300 kHz) bands was developed by an Italian factory. The receiver can monitor 10 frequencies distributed in these bands, with the measurement for each of them of the electric field intensity. Since 2009, to date, six of these radio receivers have been installed throughout Europe to establish a ‘European VLF/LF Network’. At present, two of these are into operation in Italy, and the remaining four are located in Greece, Turkey, Portugal and Romania. For the present study, the LF radio data collected over about two years were analysed. At first, the day-time data and the night-time data were separated for each radio signal. Taking into account that the LF signals are characterized by ground-wave and sky-wave propagation modes, the day-time data are related to the ground wave and the night-time data to the sky wave. In this framework, the effects of solar activity and storm activity were defined in the different trends. Then, the earthquakes with M ≥5.0 that occurred over the same period were selected, as those located in a 300-km radius around each receiver/transmitter and within the 5th Fresnel zone related to each transmitter-receiver path. Where possible, the wavelet analysis was applied on the time series of the radio signal intensity, and some anomalies related to previous earthquakes were revealed. Except for some doubt in one case, success appears to have been obtained in all of the cases related to the 300 km circles in for the ground waves and the sky waves. For the Fresnel cases, success in two cases and one failure were seen in analysing the sky waves. The failure occurred in August/September, and might be related to the disturbed conditions of the ionosphere in summer
    • …
    corecore