79 research outputs found

    Association of the CHRNA5-A3-B4 Gene Cluster With Heaviness of Smoking: A Meta-Analysis

    Get PDF
    Introduction: Variation in the CHRNA5-A3-B4 gene cluster is a promising candidate region for smoking behavior and has been linked to multiple smoking-related phenotypes (e.g., nicotine dependence) and diseases (e.g., lung cancer). Two single nucleotide polymorphisms (SNPs), rs16969968 in CHRNA5 and rs1051730 in CHRNA3, have generated particular interest. Methods: We evaluated the published evidence for association between rs16969968 (k = 27 samples) and rs1051730 (k = 44 samples) SNPs with heaviness of smoking using meta-analytic techniques. We explored which SNP provided a stronger genetic signal and investigated study-level characteristics (i.e., ancestry, disease state) to establish whether the strength of association differed across populations. We additionally tested for small study bias and explored the impact of year of publication. Results and Conclusions: Meta-analysis indicated compelling evidence of an association between the rs1051730/rs16966968 variants and daily cigarette consumption (fixed effects: B = 0.91, 95% CI = 0.77, 1.06, p < .001; random effects: B = 1.01, 95% CI = 0.81, 1.22, p < .001), equivalent to a per-allele effect of approximately 1 cigarette/day. SNP rs1051730 was found to provide a stronger signal than rs16966968 in stratified analyses (pdiff = .028), although this difference was only qualitatively observed in the subset of samples that provided data on both SNPs. While the functional relevance of rs1051730 is unknown, it may be a strong tagging SNP for functional haplotypes in this region

    Developmental Sex Differences in Nicotinic Currents of Prefrontal Layer VI Neurons in Mice and Rats

    Get PDF
    There is a large sex difference in the prevalence of attention deficit disorder; yet, relatively little is known about sex differences in the development of prefrontal attention circuitry. In male rats, nicotinic acetylcholine receptors excite corticothalamic neurons in layer VI, which are thought to play an important role in attention by gating the sensitivity of thalamic neurons to incoming stimuli. These nicotinic currents in male rats are significantly larger during the first postnatal month when prefrontal circuitry is maturing. The present study was undertaken to investigate whether there are sex differences in the nicotinic currents in prefrontal layer VI neurons during development.Using whole cell recording in prefrontal brain slice, we examined the inward currents elicited by nicotinic stimulation in male and female rats and two strains of mice. We found a prominent sex difference in the currents during the first postnatal month when males had significantly greater nicotinic currents in layer VI neurons compared to females. These differences were apparent with three agonists: acetylcholine, carbachol, and nicotine. Furthermore, the developmental sex difference in nicotinic currents occurred despite male and female rodents displaying a similar pattern and proportion of layer VI neurons possessing a key nicotinic receptor subunit.This is the first illustration at a cellular level that prefrontal attention circuitry is differently affected by nicotinic receptor stimulation in males and females during development. This transient sex difference may help to define the cellular and circuit mechanisms that underlie vulnerability to attention deficit disorder

    Financial and Psychological Risk Attitudes Associated with Two Single Nucleotide Polymorphisms in the Nicotine Receptor (CHRNA4) Gene

    Get PDF
    With recent advances in understanding of the neuroscience of risk taking, attention is now turning to genetic factors that may contribute to individual heterogeneity in risk attitudes. In this paper we test for genetic associations with risk attitude measures derived from both the psychology and economics literature. To develop a long-term prospective study, we first evaluate both types of risk attitudes and find that the economic and psychological measures are poorly correlated, suggesting that different genetic factors may underlie human response to risk faced in different behavioral domains. We then examine polymorphisms in a spectrum of candidate genes that affect neurotransmitter systems influencing dopamine regulation or are thought to be associated with risk attitudes or impulsive disorders. Analysis of the genotyping data identified two single nucleotide polymorphisms (SNPs) in the gene encoding the alpha 4 nicotine receptor (CHRNA4, rs4603829 and rs4522666) that are significantly associated with harm avoidance, a risk attitude measurement drawn from the psychology literature. Novelty seeking, another risk attitude measure from the psychology literature, is associated with several COMT (catechol-O-methyl transferase) SNPs while economic risk attitude measures are associated with several VMAT2 (vesicular monoamine transporter) SNPs, but the significance of these associations did not withstand statistical adjustment for multiple testing and requires larger cohorts. These exploratory results provide a starting point for understanding the genetic basis of risk attitudes by considering the range of methods available for measuring risk attitudes and by searching beyond the traditional direct focus on dopamine and serotonin receptor and transporter genes

    Genetic foundations of human intelligence

    Get PDF

    Nicotinic acetylcholine receptors in attention circuitry: the role of layer VI neurons of prefrontal cortex

    Get PDF
    • …
    corecore