355 research outputs found

    Study of a high spatial resolution 10B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype

    Full text link
    Although for large area detectors it is crucial to find an alternative to detect thermal neutrons because of the 3He shortage, this is not the case for small area detectors. Neutron scattering science is still growing its instruments' power and the neutron flux a detector must tolerate is increasing. For small area detectors the main effort is to expand the detectors' performances. At Institut Laue-Langevin (ILL) we developed the Multi-Blade detector which wants to increase the spatial resolution of 3He-based detectors for high flux applications. We developed a high spatial resolution prototype suitable for neutron reflectometry instruments. It exploits solid 10B-films employed in a proportional gas chamber. Two prototypes have been constructed at ILL and the results obtained on our monochromatic test beam line are presented here

    Measurement of the complex Faraday angle in thin-film metals and high temperature superconductors

    Full text link
    A sensitive polarization modulation technique uses photoelastic modulation and hetrodyne detection to simultaneously measure the Faraday rotation and induced ellipticity in light transmitted by semiconducting and metallic samples. The frequencies measured are in the mid-infrared and correspond to the spectral lines of a CO2 laser. The measured temperature range is continuous and extends from 35 to 330K. Measured samples include GaAs and Si substrates, gold and copper films, and YBCO and BSCCO high temperature superconductors.Comment: 12 pages of text, 6 figures, fixed typos in formulas, added figur

    Particle resolution and non-linear signal : processing with RADAR/SONAR applications

    Get PDF
    This paper introduces a general method for a particle solution to optimal nonlinear estimation in signal processing . We deal here with the class of discrete time Markov processes, to which the estimation problems of RADAR/SONAR signal processing belong. The main feature of particle resolution is that it generates a global picture of the probability space and therefore provides all desirable estimators (maximum likelyhood, minimum variance, etc . . . ). Its algorithmic principle relies on a dynamic version of Monte-Carlo principles and is independant of dynamic complexity (in particular the nature of non-linearities) . It is on the number of noise variables that the size of the number of particles depends, according to resolution accuracy. Convergence is inconditionaly stable under simple hypotheses. As an example, two important non-linear problems which arise in RADAR/SONAR signal processing are dealt with, using this method.Cet article présente une méthode générale de résolution particulaire pour l'estimation optimale non-linéaire en traitement du signal. Les processus considérés sont de la classe markovienne à temps discret, dont les problèmes d'estimation en traitement du signal RADAR/SONAR, pris pour illustration, sont des exemples particuliers. Le propre de la résolution particulaire est d'engendrer une exploration naturelle de l'espace de probabilité et de fournir en conséquence tous les estimateurs désirables (maxima de vraisemblance, minimum de variance,...) constituant une adaptation dynamique de la loi des grands nombres, son principe algorithmique est indépendant de la complexité dynamique (nature des non-linéarités notamment). C'est du nombre de variables "bruit" pilotant le système que dépend le plus ou moins grand nombre de particules suivant la finesse de résolution. La convergence est inconditionnellement stable sous des hypothèses simples que l'on explicite. A titre d'exemple, deux problèmes non-linéaires d'importance rencontrés en traitement du signal RADAR/SONAR sont traités par cette méthode

    Magneto-optical evidence for a gapped Fermi surface in underdoped YBa2Cu3O6+x

    Full text link
    The infrared (900-1100 cm-1) Faraday rotation and circular dichroism are measured in the normal state of underdoped High Tc superconductors and used to study the magneto-transport. YBa2Cu3O6+x thin films are investigated in the temperature range 10-300 K in magnetic fields up to 8 Tesla and as a function of oxygen concentration. A dramatic increase of the Hall frequency is observed for underdoped samples which is not consistent with the approach to a Mott transition but is consistent with a partial gapping of the Fermi surface as predicted in charge density wave models.Comment: 14 pages, 4 figure

    A noiseless kilohertz frame rate imaging detector based on microchannel plates read out with the Medipix2 CMOS pixel chip

    Get PDF
    A new hybrid optical imaging detector is described that is being developed for the next generation adaptive optics (AO) wavefront sensors (WFS) for ground-based telescopes. The detector consists of a photocathode and proximity focused microchannel plates (MCPs) read out by the Medipix2 CMOS pixel ASIC. Each pixel of the Medipix2 device measures 55x55 um2 and comprises pre-amplifier, a window discriminator and a 14-bit counter. The 256x256 Medipix2 array can be read out noiselessly in 287 us. The readout can be electronically shuttered down to a temporal window of a few us. The Medipix2 is buttable on 3 sides to produce 512x(n*256) pixel devices. Measurements with ultraviolet light yield a spatial resolution of the detector at the Nyquist limit. Sub-pixel resolution can be achieved using centroiding algorithms. For the AO application, very high continuous frame rates of the order of 1 kHz are required for a matrix of 512x512 pixels. The design concepts of a parallel readout board are presented that will allow this fast data throughput. The development status of the optical WFS tube is also explained

    The time-dependent rearrangement of the epithelial basement membrane in human skin wounds

    Get PDF
    In 62 human skin wounds (surgical wounds, stab wounds and lacerations after surgical treatment) we analyzed the immunohistochemical localization of collagen IV in the epithelial basement membrane. In 27 of these wounds the distribution of collagen VII, which represents a specific component of the basement membrane of stratified epithelia, was also analyzed. We were able to demonstrate a virtually identical co-distribution of both collagen IV and VII in the wound area with no significant time-dependent differences in the appearance of both collagen types. Fragments of the epithelial basement membrane could be detected in the wound area from as early as 4 days after wounding and after 8 days a complete restitution of the epithelial basement membrane was observed. In all cases with a wound age of more than 21 days the basement membrane was completely reformed over the former lesional area. The period between 8 and 21 days after wounding was characterized by a wide variability ranging from complete restitution to deposition of basement membrane fragments or total lack of the epidermal basement membrane

    Strong, Ultra-narrow Peaks of Longitudinal and Hall Resistances in the Regime of Breakdown of the Quantum Hall Effect

    Full text link
    With unusually slow and high-resolution sweeps of magnetic field, strong, ultra-narrow (width down to 100ÎĽT100 {\rm \mu T}) resistance peaks are observed in the regime of breakdown of the quantum Hall effect. The peaks are dependent on the directions and even the history of magnetic field sweeps, indicating the involvement of a very slow physical process. Such a process and the sharp peaks are, however, not predicted by existing theories. We also find a clear connection between the resistance peaks and nuclear spin polarization.Comment: 5 pages with 3 figures. To appear in PR
    • …
    corecore