78 research outputs found
Raptors are still affected by environmental pollutants:Greenlandic Peregrines will not have normal eggshell thickness until 2034
The DDT-induced effects, eggshell thinning and breeding failure in Peregrine Falcon (Falco peregrinus) populations were reverted with restrictions on the use of the compound from the 1970s, and in most studied populations, the eggshell thickness is back to normal. In Greenland, a previous study of eggshell thinning in Peregrines found that shells had not yet reached pre-DDT levels. In this study, we extend the time series and reinterpret shell thinning data for 196 clutches covering a 45-year time span (1972â2017). There was a significant (P<0.001) increase in the eggshell thickness of 0.23% per year. This corresponds to a change in eggshell thinning from 14.5% to 5.4% in 2017 compared to the pre-DDT mean. With the current rate of change, pre-DDT shell thickness is predicted to be reached around the year 2034. However, a few clutches are still below the critical limit. The relatively slower recovery of the shell thickness in the Greenland population is likely indicative of the slower phasing out of DDT in the Greenlandic Peregrinesâ wintering grounds in Latin America. The shell thinning in the Greenlandic population probably never crossed the 17% threshold associated with population declines, contrary to the populations in many other parts of the world
Effects of oil and oil burn residues on seabird feathers
It is well known, that in case of oil spill, seabirds are among the groups of animals most vulnerable. Even small amounts of oil can have lethal effects by destroying the waterproofing of their plumage, leading to loss of insulation and buoyancy. In the Arctic these impacts are intensified. To protect seabirds, a rapid removal of oil is crucial and in situ burning could be an efficient method. In the present work exposure effects of oil and burn residue in different doses was studied on seabird feathers from legally hunted Common eider (Somateria mollissima) by examining changes in total weight of the feather and damages on the microstructure (Amalgamation Index) of the feathers before and after exposure. The results of the experiments indicate that burn residues from in situ burning of an oil spill have similar or larger fouling and damaging effects on seabird feathers, as compared to fresh oil
What are the toxicological effects of mercury in Arctic biota?
This review critically evaluates the available mercury (Hg) data in Arctic marine biota and the Inuit population against toxicity threshold values. In particular marine top predators exhibit concentrations of mercury in their tissues and organs that are believed to exceed thresholds for biological effects. Species whose concentrations exceed threshold values include the polar bears (Ursus maritimus), beluga whale (Delphinapterus leucas), pilot whale (Globicephala melas), hooded seal (Cystophora cristata), a few seabird species, and landlocked Arctic char (Salvelinus alpinus). Toothed whales appear to be one of the most vulnerable groups, with high concentrations of mercury recorded in brain tissue with associated signs of neurochemical effects. Evidence of increasing concentrations in mercury in some biota in Arctic Canada and Greenland is therefore a concern with respect to ecosystem health
Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF).
Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in sub-arctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies
Length of skull traits and time of attainment of full size of traits in East Greenland and Svalbard polar bears
Size, growth and sexual dimorphism of nine skull traits was studied in 300 East Greenland and 391 Svalbard polar bears (Ursus maritimus). Two traits were significantly larger in bears from East Greenland compared to Svalbard bears, and trait size was smaller after 1960 in five traits. For both localities and both age groups (sub adult, adult), mean trait size values were higher in males than females (all: P < 0.05). Gompertz growth models showed trait size increasing with age in seven traits. Depending on the trait, males reached 95% asymptotic trait size at age 3-10, females at age 2-6. The females of both localities matured at approximately the same age, whereas the Svalbard males generally matured years later than their East Greenland peers. The differences found in the present study between the two polar bear subpopulations support the notion that East Greenland and Svalbard polar bears probably should be managed as separate units
- âŠ