372 research outputs found

    POLYRIBOSOMES AND PROTEIN SYNTHESIS DURING RETICULOCYTE MATURATION IN VITRO

    Full text link

    Anti-tumour activity in vitro and in vivo of selective differentiating agents containing hydroxamate

    Get PDF
    A series of hydroxamates, which are not metalloprotease inhibitors, have been found to be selectively toxic to a range of transformed and human tumour cells without killing normal cells (fibroblasts, melanocytes) at the same concentrations. Within 24 h of treatment, drug action is characterized by morphological reversion of tumour cells to a more normal phenotype (dendritic morphology), and rapid and reversible acetylation of histone H4 in both tumour and normal cells. Two; hydroxamates inhibited growth of xenografts of human melanoma cells in nude mice; resistance did not develop in vivo or in vitro. A third hydroxamate, trichostatin A, was active in vitro but became inactivated and had no anti-tumour activity in vivo. Development of dendritic morphology was found to be dependent upon phosphatase activity, RNA and protein synthesis. Proliferating hybrid clones of sensitive and resistant cells remained sensitive to ABHA, indicating a dominant-negative mechanism of sensitivity. Histone H4 hyperacetylation suggests that these agents act at the chromatin level. This work may lead to new drugs that are potent, and selective anti-tumour agents with low toxicity to normal Cells

    In Silico Simulation of Corticosteroids Effect on an NFkB- Dependent Physicochemical Model of Systemic Inflammation

    Get PDF
    During the onset of an inflammatory response signaling pathways are activated for "translating" extracellular signals into intracellular responses converging to the activation of nuclear factor (NF)-kB, a central transcription factor in driving the inflammatory response. An inadequate control of its transcriptional activity is associated with the culmination of a hyper-inflammatory response making it a desired therapeutic target. Predicated upon the nature of the response, a systems level analysis might provide rational leads for the development of strategies that promote the resolution of the response.A physicochemical host response model is proposed to integrate biological information in the form of kinetic rules and signaling cascades with pharmacokinetic models of drug action for the modulation of the response. The unifying hypothesis is that the response is triggered by the activation of the NFkB signaling module and corticosteroids serve as a template for assessing anti-inflammatory strategies. The proposed in silico model is evaluated through its ability to predict and modulate uncontrolled responses. The pre-exposure of the system to hypercortisolemia, i.e. 6 hr before or simultaneously with the infectious challenge "reprograms" the dynamics of the host towards a balanced inflammatory response. However, if such an intervention occurs long before the inflammatory insult a symptomatic effect is observed instead of a protective relief while a steroid infusion after inducing inflammation requires much higher drug doses.We propose a reversed engineered inflammation model that seeks to describe how the system responds to a multitude of external signals. Timing of intervention and dosage regimes appears to be key determinants for the protective or symptomatic effect of exogenous corticosteroids. Such results lie in qualitative agreement with in vivo human studies exposed both to LPS and corticosteroids under various time intervals thus improving our understanding of how interacting modules generate a behavior

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York

    History of clinical transplantation

    Get PDF
    The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts
    corecore