2 research outputs found

    Clinical Evaluation of Three Commercial RT-PCR Kits for Routine COVID-19 Diagnosis

    No full text
    Amongst the multiple ways to diagnose coronavirus disease-2019 (COVID-19), reverse transcription polymerase chain reaction (RT-PCR) remains the reference gold standard, providing fast and accurate results. This study evaluated and compared the performance of three commercially available COVID-19 RT-PCR kits-Aridia® COVID-19 Real-Time PCR Test (CTK Biotech, Inc., Poway, CA, USA), Novel Coronavirus (2019-nCoV) Nucleic Acid Detection Kit (Sansure Biotech Inc., Changsha, China) and AllplexTM 2019-nCoV assay (Seegene Inc., Seoul, Republic of Korea) for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A total of 326 clinically suspected patients were enrolled for the study, and among them, 209 were diagnosed as positive and 117 as negative when tested with the reference method, US CDC 2019-Novel Coronavirus (2019-nCoV) Real Time RT-PCR Diagnostic Panel. The Aridia® kit showed total agreement with the reference test, with a sensitivity of 100% (95% CI: 98.25% to 100.0%) and a specificity of 100% (96.90% to 100.00%). The AllplexTM kit also showed 100% specificity (95% CI: 96.90% to 100.00%), but a lower sensitivity (98.09%, 95% CI: 95.17% to 99.48%). Among the three kits, the Novel Coronavirus (2019-nCoV) Nucleic Acid Detection Kit showed the worst performance, with a sensitivity of 98.6% (95% CI: 95.9% to 99.7%) and a specificity of 95.73, 95% (CI: 90.31% to 98.60%). While all these kits conform to the requirement for routine molecular diagnosis with high performances, the Aridia® COVID-19 Real-Time PCR Test showed the best performance among the three kits

    Approaches of dengue control: vaccine strategies and future aspects

    Get PDF
    Dengue, caused by the dengue virus (DENV), affects millions of people worldwide every year. This virus has two distinct life cycles, one in the human and another in the mosquito, and both cycles are crucial to be controlled. To control the vector of DENV, the mosquito Aedes aegypti, scientists employed many techniques, which were later proved ineffective and harmful in many ways. Consequently, the attention shifted to the development of a vaccine; researchers have targeted the E protein, a surface protein of the virus and the NS1 protein, an extracellular protein. There are several types of vaccines developed so far, such as live attenuated vaccines, recombinant subunit vaccines, inactivated virus vaccines, viral vectored vaccines, DNA vaccines, and mRNA vaccines. Along with these, scientists are exploring new strategies of developing improved version of the vaccine by employing recombinant DNA plasmid against NS1 and also aiming to prevent the infection by blocking the DENV life cycle inside the mosquitoes. Here, we discussed the aspects of research in the field of vaccines until now and identified some prospects for future vaccine developments
    corecore