112 research outputs found
Probabilistic Constraint Logic Programming
This paper addresses two central problems for probabilistic processing
models: parameter estimation from incomplete data and efficient retrieval of
most probable analyses. These questions have been answered satisfactorily only
for probabilistic regular and context-free models. We address these problems
for a more expressive probabilistic constraint logic programming model. We
present a log-linear probability model for probabilistic constraint logic
programming. On top of this model we define an algorithm to estimate the
parameters and to select the properties of log-linear models from incomplete
data. This algorithm is an extension of the improved iterative scaling
algorithm of Della-Pietra, Della-Pietra, and Lafferty (1995). Our algorithm
applies to log-linear models in general and is accompanied with suitable
approximation methods when applied to large data spaces. Furthermore, we
present an approach for searching for most probable analyses of the
probabilistic constraint logic programming model. This method can be applied to
the ambiguity resolution problem in natural language processing applications.Comment: 35 pages, uses sfbart.cl
Counterfactual Learning from Bandit Feedback under Deterministic Logging: A Case Study in Statistical Machine Translation
The goal of counterfactual learning for statistical machine translation (SMT)
is to optimize a target SMT system from logged data that consist of user
feedback to translations that were predicted by another, historic SMT system. A
challenge arises by the fact that risk-averse commercial SMT systems
deterministically log the most probable translation. The lack of sufficient
exploration of the SMT output space seemingly contradicts the theoretical
requirements for counterfactual learning. We show that counterfactual learning
from deterministic bandit logs is possible nevertheless by smoothing out
deterministic components in learning. This can be achieved by additive and
multiplicative control variates that avoid degenerate behavior in empirical
risk minimization. Our simulation experiments show improvements of up to 2 BLEU
points by counterfactual learning from deterministic bandit feedback.Comment: Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2017, Copenhagen, Denmar
Using a Probabilistic Class-Based Lexicon for Lexical Ambiguity Resolution
This paper presents the use of probabilistic class-based lexica for
disambiguation in target-word selection. Our method employs minimal but precise
contextual information for disambiguation. That is, only information provided
by the target-verb, enriched by the condensed information of a probabilistic
class-based lexicon, is used. Induction of classes and fine-tuning to verbal
arguments is done in an unsupervised manner by EM-based clustering techniques.
The method shows promising results in an evaluation on real-world translations.Comment: 7 pages, uses colacl.st
- …