6 research outputs found
Evaluation grundlegender AbhÀngigkeiten und Optimierung der kombinierten Diffusions- und Perfusions-Magnetresonanzbildgebung mittels Intravoxel-Incoherent-Motion in Abdomen und Unterschenkel
Intravoxel Incoherent Motion Imaging (IVIM imaging) allows the simultaneous measurement of tissue diffusion and perfusion properties in different organs. In this thesis, the originally introduced biexponential model as well as a less known triexponential model for the application in the liver and kidney will be discussed. Regardless of the used model, the obtained IVIM parameters are diffcult to reproduce, and therefore most studies are not comparable. For this reason, the aim of this work was to increase the reproducibility of the determined IVIM parameters.
First of all, the magnetic field dependence of the IVIM parameters of both models was investigated using two magnetic field strengths. This showed a dependence of the diffusion coeffcient and the pseudo-diffusion coefficient of the biexponential model on the used magnetic fieled srength. In this work, the found dependency was attributed to a different signal composition of the investigated volume, since the T2-times of the signal components change with the used magnetic field strength.
As a further step to increase the reproducibility of the triexponential IVIM parameters, the choice of measurement points for sampling the triexponential signal curve was optimized for application in the liver. Starting from an optimized distribution consisting of six b-values, another optimal b-value was searched for and added to the existing distribution until an optimized b-value distribution consisting of 100 b-values was achieved. This distribution was compared with distributions already used in the literature by simulations and in vivo measurements. In both cases the IVIM parameters could be determined more precisely by using the optimized b-value distribution. Due to the gained precision, it was possible for the first time to generate triexponential IVIM parameter maps of the liver using the in vivo data sets acquired by the optimized b-value distribution.
For the special case of the liver, the diffusion coefficient is also difficult to reproduce, since, due to its position in relation to the heart, the pulsation of the heart leads to a reduced signal in the area of the left liver lobe. In a clinical study it was tested whether the so-called pulsation artifact can be reduced by a breathhold in expiration or inspiration.
There was no difference in the expression of the artifact in either of the two breathing techniques used. In images taken during inspiration, a fat artifact was found in the area of the right kidney. For this reason, and due to the increased patient comfort in expiration, the acquisition of diffusion-weighted data in expiration is recommended in this study.
In addition to imaging in the liver, another clinical study investigated the influence of external pressure in the form of a compression stocking, as well as the intensive strain on the calf muscles, on the biexponential IVIM parameters of the complete lower leg muscles. For this purpose, the lower legs of healthy volunteers were measured at six different points in time. The results of the study show no influence of compression, at all points in time, on the specic IVIM parameters. The increase in blood
flow during muscle activity as well as the edema induced by strain could be visualized with IVIM imaging.Die Intravoxel-Incoherent-Motion-Bildgebung (IVIM-Bildgebung) ermöglicht die gleichzeitige
Messung von Diffusions- und Perfusionsparametern in unterschiedlichen Organen.
In dieser Arbeit wird speziell auf das ursprĂŒnglich eingefĂŒhrte biexponentielle Modell
sowie ein weniger bekanntes triexponentielles Modell fĂŒr die Anwendung in Leber und
Niere eingegangen. UnabhÀngig vom verwendeten Modell, sind die ermittelten IVIMParameter
schwer reproduzierbar, wodurch die meisten Studien untereinander nicht vergleichbar
sind. Aus diesem Grund war das Ziel dieser Arbeit, die Reproduzierbarkeit der
ermittelten IVIM-Parameter zu erhöhen.
HierfĂŒr wurde unter anderem, die MagnetfeldabhĂ€ngigkeit der IVIM-Parameter beider
Modelle mithilfe von zwei MagnetfeldstÀrken untersucht. Hierbei zeigte sich eine
AbhÀngigkeit des Diffusionskoeffizienten sowie der Pseudo-Diffusionskonstante des biexponentiellen
Modells, von der verwendeten MagnetfeldstÀrke. Die gefundene AbhÀngigkeit
wurde in dieser Arbeit auf eine unterschiedliche Signalzusammensetzung des untersuchten
Volumens zurĂŒckgefĂŒhrt, da sich die T2-Zeiten der Signalkomponenten mit der
verwendeten MagnetfeldstÀrke verÀndern.
Als ein weiterer Schritt, um die Reproduzierbarkeit der triexponentiellen IVIM-Parameter
zu erhöhen, wurde die Wahl der Messpunkte zur Abtastung der triexponentiellen Signalkurve
fĂŒr die Anwendung in der Leber optimiert. Ausgehend von einer optimierten
Verteilung bestehend aus sechs b-Werten wurde jeweils ein weiterer optimaler b-Wert
gesucht und dieser zur bestehenden Verteilung hinzugefĂŒgt, bis eine optimierte b-Wert-
Verteilung mit 100 b-Werten erreicht wurde. Diese wurde mit bereits in der Literatur
verwendeten Verteilungen durch Simulationen und in vivo Messungen verglichen. In beiden
FÀllen konnten die IVIM-Parameter durch die optimierte b-Wert-Verteilung prÀziser
ermittelt werden. Aufgrund der zugewonnenen PrÀzision war es erstmals möglich, triexponentielle
IVIM-Parameterkarten der Leber mithilfe der durch die optimierte b-Wert-
Verteilung aufgenommenen in vivo Datensets zu erzeugen.
FĂŒr den speziellen Fall der Leber ist der Diffusionskoeffzient ebenfalls schwer reproduzierbar,
da aufgrund der Lage zum Herzen dessen Pulsation zu einem reduzierten Signal
im Bereich des linken Leberlappens fĂŒhrt. Im Rahmen einer klinischen Studie wurde getestet,
ob das sogenannte Pulsationsartefakt durch eine Atemanhalte in Exspiration oder
Inspiration reduziert werden kann. Es zeigte sich kein Unterschied in der AusprÀgung des
Artefaktes in einer der beiden verwendeten Atemtechniken. In Bildern, welche wÀhrend
Inspiration aufgenommen wurden, wurde ein Fettartefakt im Bereich der rechten Niere
gefunden. Aus diesem Grund sowie aufgrund des erhöhten Patientenkomforts in Exspiration
wird im Rahmen dieser Arbeit, die Aufnahme von diffusionsgewichteten Daten in
Exspiration empfohlen.
Neben der Bildgebung in der Leber, wurde in einer weiteren klinischen Studie der Einfluss von externem Druck in Form eines Kompressionsstrumpfes, sowie die intensive Belastung der Wadenmuskulatur auf die biexponentiellen IVIM-Parameter der kompletten
Unterschenkelmuskulatur untersucht. HierfĂŒr wurden die Unterschenkel von gesunden Probanden zu sechs verschiedenen Zeitpunkten gemessen. Das Ergebnis der Studie zeigt keinen Einfluss der Kompression, zu allen Zeitpunkten, auf die bestimmten IVIMParameter.
Der Anstieg der Durchblutung wÀhrend der MuskelaktivitÀt sowie das durch
die Belastung induzierte Ădem, konnte mit der IVIM-Bildgebung dargestellt werden
Echo time dependence of biexponential and triexponential intravoxel incoherent motion parameters in the liver
Purpose: Intravoxel incoherent motion (IVIM) studies are performed with different acquisition protocols. Comparing them requires knowledge of echo time (TE) dependencies. The TE-dependence of the biexponential perfusion fraction f is well-documented, unlike that of its triexponential counterparts f1 and f2 and the biexponential and triexponential pseudodiffusion coefficients D*, (Formula presented.), and (Formula presented.). The purpose was to investigate the TE-dependence of these parameters and to check whether the triexponential pseudodiffusion compartments are associated with arterial and venous blood. Methods: Fifteen healthy volunteers (19-58 y; mean: 24.7 y) underwent diffusion-weighted imaging of the abdomen with 24 b-values (0.2-800 s/mm2) at TEs of 45, 60, 75, and 90 ms. Regions of interest (ROIs) were manually drawn in the liver. One set of bi- and triexponential IVIM parameters per volunteer and TE was determined. The TE-dependence was assessed with the Kruskal-Wallis test. Results: TE-dependence was observed for f (P <.001), f1 (P =.001), and f2 (P <.001). Their median values at the four measured TEs were: f: 0.198/0.240/0.274/0.359, f1: 0.113/0.139/0.146/0.205, f2: 0.115/0.155/0.182/0.194. D, D*, (Formula presented.), and (Formula presented.) showed no significant TE-dependence. Their values were: diffusion coefficient D (10â4 mm2/s): 9.45/9.63/9.75/9.41, biexponential D* (10â2 mm2/s): 5.26/5.52/6.13/5.82, triexponential (Formula presented.) (10â2 mm2/s): 1.73/2.91/2.25/2.51, triexponential (Formula presented.) (mm2/s): 0.478/1.385/0.616/0.846. Conclusion: f1 and f2 show similar TE-dependence as f, ie, increase with rising TE; an effect that must be accounted for when comparing different studies. The diffusion and pseudodiffusion coefficients might be compared without TE correction. Because of the similar TE-dependence of f1 and f2, the triexponential pseudodiffusion compartments are most probably not associated to venous and arterial blood
On the dependence of the cardiac motion artifact on the breathing cycle in liver diffusion-weighted imaging
Purpose
The purpose of this study was to investigate whether the cardiac motion artifact that regularly appears in diffusion-weighted imaging of the left liver lobe might be reduced by acquiring images in inspiration, when the coupling between heart and liver might be minimal.
Materials and methods
43 patients with known or suspected focal liver lesions were examined at 1.5 T with breath hold acquisition, once in inspiration and once in expiration. Data were acquired with a diffusion-weighted echo planar imaging sequence and two b-values (b50 = 50 s/mmÂČ and b800 = 800 s/mmÂČ). The severity of the cardiac motion artifact in the left liver lobe was rated by two experienced radiologists for both b-values with a 5 point Likert scale. Additionally, the normalized signal S(b800)/S(b50) in the left liver lobe was computed. The Wilcoxon signed-rank test was used comparing the scores of the two readers obtained in inspiration and expiration, and to compare the normalized signal in inspiration and expiration.
Results
The normalized signal in inspiration was slightly higher than in expiration (0.349±0.077 vs 0.336±0.058), which would indicate a slight reduction of the cardiac motion artifact, but this difference was not significant (p = 0.24). In the qualitative evaluation, the readers did not observe a significant difference for b50 (reader 1: p = 0.61; reader 2: p = 0.18). For b800, reader 1 observed a significant difference of small effect size favouring expiration (p = 0.03 with a difference of mean Likert scores of 0.27), while reader 2 observed no significant difference (p = 0.62).
Conclusion
Acquiring the data in inspiration does not lead to a markedly reduced cardiac motion artifact in diffusion-weighted imaging of the left liver lobe and is in this regard not to be preferred over acquiring the data in expiration
On the Field Strength Dependence of Bi- and Triexponential Intravoxel Incoherent Motion (IVIM) Parameters in the Liver
Background: Studies on intravoxel incoherent motion (IVIM) imaging are carried out with different acquisition protocols. Purpose: To investigate the dependence of IVIM parameters on the B0 field strength when using a bi- or triexponential model. Study Type: Prospective. Study Population: 20 healthy volunteers (age: 19â28 years). Field Strength/Sequence: Volunteers were examined at two field strengths (1.5 and 3T). Diffusion-weighted images of the abdomen were acquired at 24 b-values ranging from 0.2 to 500 s/mm2. Assessment: ROIs were manually drawn in the liver. Data were fitted with a bi- and a triexponential IVIM model. The resulting parameters were compared between both field strengths. Statistical Tests: One-way analysis of variance (ANOVA) and KruskalâWallis test were used to test the obtained IVIM parameters for a significant field strength dependency. Results: At b-values below 6 s/mm2, the triexponential model provided better agreement with the data than the biexponential model. The average tissue diffusivity was D = 1.22/1.00 ÎŒm2/msec at 1.5/3T. The average pseudodiffusion coefficients for the biexponential model were D* = 308/260 ÎŒm2/msec at 1.5/3T; and for the triexponential model D* = 81.3/65.9 ÎŒm2/msec, D* 2 = 2453/2333 ÎŒm2/msec at 1.5/3T. The average perfusion fractions for the biexponential model were f = 0.286/0.303 at 1.5/3T; and for the triexponential model f1 = 0.161/0.174 and f2 = 0.152/0.159 at 1.5/3T. A significant B0 dependence was only found for the biexponential pseudodiffusion coefficient (ANOVA/KW P = 0.037/0.0453) and tissue diffusivity (ANOVA/KW: P < 0.001). Data Conclusion: Our experimental results suggest that triexponential pseudodiffusion coefficients and perfusion fractions obtained at different field strengths could be compared across different studies using different B0. However, it is recommended to take the field strength into account when comparing tissue diffusivities or using the biexponential IVIM model. Considering published values for oxygenation-dependent transversal relaxation times of blood, it is unlikely that the two blood compartments of the triexponential model represent venous and arterial blood. Level of Evidence: 1. Technical Efficacy Stage: 2. J. Magn. Reson. Imaging 2019;50:1883â1892
On the field strength dependence of Bi- and Triexponential Intravoxel Incoherent Motion (IVIM) parameters in the liver
Background
Studies on intravoxel incoherent motion (IVIM) imaging are carried out with different acquisition protocols.
Purpose
To investigate the dependence of IVIM parameters on the B0 field strength when using a biâ or triexponential model.
Study Type
Prospective.
Study Population
20 healthy volunteers (age: 19â28 years).
Field Strength/Sequence
Volunteers were examined at two field strengths (1.5 and 3T). Diffusionâweighted images of the abdomen were acquired at 24 bâvalues ranging from 0.2 to 500 s/mm2.
Assessment
ROIs were manually drawn in the liver. Data were fitted with a biâ and a triexponential IVIM model. The resulting parameters were compared between both field strengths.
Statistical Tests
Oneâway analysis of variance (ANOVA) and KruskalâWallis test were used to test the obtained IVIM parameters for a significant field strength dependency.
Results
At bâvalues below 6 s/mm2, the triexponential model provided better agreement with the data than the biexponential model. The average tissue diffusivity was D = 1.22/1.00 ÎŒm2/msec at 1.5/3T. The average pseudodiffusion coefficients for the biexponential model were D* = 308/260 ÎŒm2/msec at 1.5/3T; and for the triexponential model urn:x-wiley:10531807:media:jmri26730:jmri26730-math-0001 = 81.3/65.9 ÎŒm2/msec, urn:x-wiley:10531807:media:jmri26730:jmri26730-math-0002 = 2453/2333 ÎŒm2/msec at 1.5/3T. The average perfusion fractions for the biexponential model were f = 0.286/0.303 at 1.5/3T; and for the triexponential model f1 = 0.161/0.174 and f2 = 0.152/0.159 at 1.5/3T. A significant B0 dependence was only found for the biexponential pseudodiffusion coefficient (ANOVA/KW P = 0.037/0.0453) and tissue diffusivity (ANOVA/KW: P < 0.001).
Data Conclusion
Our experimental results suggest that triexponential pseudodiffusion coefficients and perfusion fractions obtained at different field strengths could be compared across different studies using different B0. However, it is recommended to take the field strength into account when comparing tissue diffusivities or using the biexponential IVIM model. Considering published values for oxygenationâdependent transversal relaxation times of blood, it is unlikely that the two blood compartments of the triexponential model represent venous and arterial blood