3 research outputs found

    PEG Reinforced Scaffold Promotes Uniform Distribution of Human MSC-Created Cartilage Matrix

    No full text
    Previously, we used a gelatin/hyaluronic acid (GH)-based scaffold to induce chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSC). The results showed that hBMSCs underwent robust chondrogenesis and facilitated in vivo cartilage regeneration. However, it was noticed that the GH scaffolds display a compressive modulus that is markedly lower than native cartilage. In this study, we aimed to enhance the mechanical strength of GH scaffolds without significantly impairing their chondrosupportive property. Specifically, polyethylene glycol diacrylate (PEGDA) and photoinitiators were infiltrated into pre-formed hBMSC-laden GH scaffolds and then photo-crosslinked. Results showed that infiltration of PEG at the beginning of chondrogenesis significantly increased the deposition of glycosaminoglycans (GAGs) in the central area of the scaffold. To explore the mechanism, we compared the cell migration and proliferation in the margin and central areas of GH and PEG-infiltrated GH scaffolds (GH+PEG). Limited cell migration was noticed in both groups, but more proliferating cells were observed in GH than in GH+PEG. Lastly, the in vitro repairing study with bovine cartilage explants showed that PEG- impregnated scaffolds integrated well with host tissues. These results indicate that PEG-GH hybrid scaffolds, created through infiltrating PEG into pre-formed GH scaffolds, display good integration capacity and represent a new tool for the repair of chondral injury

    Cytokine Profiling and Intra-Articular Injection of Autologous Platelet-Rich Plasma in Knee Osteoarthritis

    No full text
    Osteoarthritis (OA) is a degenerative joint disease leading to joint pain and stiffness. Due to lack of effective treatments, physical and psychological disabilities caused by OA have a detrimental impact on the patient’s quality of life. Emerging evidence suggests that intra-articular injection of platelet-rich plasma (PRP) may provide favorable results since PRP comprises not only a high level of platelets but also a huge amount of cytokines, chemokines, and growth factors. However, the precise mechanism and standardization method remain uncertain. This study aimed to examine cytokine profiling in both PRP and platelet-poor plasma (PPP) of knee OA patients and to determine the effects of PRP on OA chondrocytes and knee OA patients. PRP contained a wide variety of cytokines, chemokines, growth factors, and autologous intra-articular PRP injection resulted in favorable outcomes in knee OA patients. Significant increases in levels of IL-1, IL-2, IL-7, IL-8, IL-9, IL-12, TNF-α, IL-17, PDGF-BB, bFGF, and MIP-1β were detected in PRP compared to PPP (p < 0.001). An in vitro study showed a marked increase in proliferation in OA chondrocytes cultured with PRP, compared to PPP and fetal bovine serum (p < 0.001). In a clinical study, knee OA patients treated with PRP showed improvement of physical function and pain, assessed by physical performance, Western Ontario and McMaster Universities Arthritis Index and visual analog scale. Our findings from both in vitro and clinical studies suggest that intra-articular PRP injection in knee OA patients may be a potential therapeutic strategy for alleviating knee pain and delaying the need for surgery

    Differences in the intrinsic chondrogenic potential of human mesenchymal stromal cells and iPSC‐derived multipotent cells

    No full text
    Abstract Background Human multipotent progenitor cells (hiMPCs) created from induced pluripotent stem cells (iPSCs) represent a new cell source for cartilage regeneration. In most studies, bone morphogenetic proteins (BMPs) are needed to enhance transforming growth factor‐β (TGFβ)‐induced hiMPC chondrogenesis. In contrast, TGFβ alone is sufficient to result in robust chondrogenesis of human primary mesenchymal stromal cells (hMSCs). Currently, the mechanism underlying this difference between hiMPCs and hMSCs has not been fully understood. Methods In this study, we first tested different growth factors alone or in combination in stimulating hiMPC chondrogenesis, with a special focus on chondrocytic hypertrophy. The reparative capacity of hiMPCs‐derived cartilage was assessed in an osteochondral defect model created in rats. hMSCs isolated from bone marrow were included in all studies as the control. Lastly, a mechanistic study was conducted to understand why hiMPCs and hMSCs behave differently in responding to TGFβ. Results Chondrogenic medium supplemented with TGFβ3 and BMP6 led to robust in vitro cartilage formation from hiMPCs with minimal hypertrophy. Cartilage tissue generated from this new method was resistant to osteogenic transition upon subcutaneous implantation and resulted in a hyaline cartilage‐like regeneration in osteochondral defects in rats. Interestingly, TGFβ3 induced phosphorylation of both Smad2/3 and Smad1/5 in hMSCs, but only activated Smad2/3 in hiMPCs. Supplementing BMP6 activated Smad1/5 and significantly enhanced TGFβ’s compacity in inducing hiMPC chondrogenesis. The chondro‐promoting function of BMP6 was abolished by the treatment of a BMP pathway inhibitor. Conclusions This study describes a robust method to generate chondrocytes from hiMPCs with low hypertrophy for hyaline cartilage repair, as well as elucidates the difference between hMSCs and hiMPCs in response to TGFβ. Our results also indicated the importance of activating both Smad2/3 and Smad1/5 in the initiation of chondrogenesis
    corecore