836 research outputs found

    The Play-Out Effect and Preference Reversals: Evidence For Noisy Maximization

    Get PDF
    In this paper, we document a play-out effect in preference reversal experiments. We compare data where preferences are elicited using (1) purely hypothetical gambles, (2) played-out, but unpaid gambles and (3) played-out gambles with truth-revealing monetary payments. We ask whether a model of stable preferences with random errors (e.g., expected utility with errors) can explain the data. The model is strongly rejected in data collected using purely hypothetical gambles. However, simply playing-out the gambles, even in the absence of payments, shifts the data pattern so that noisy maximization is no longer rejected. Inducing risk preferences using a lottery procedure, using monetary incentives or both shift the data pattern further so that noisy maximization achieves the best possible fit to the aggregate data. No model could fit the data better. We argue that play-out shifts the response pattern by inducing value because subjects can use outcomes to keep score. Induction or monetary payments create stronger induced values, shifting the pattern further

    Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes

    Get PDF
    Despite moderate heritability estimates, progress in uncovering the molecular substrate underpinning major depressive disorder (MDD) has been slow. In this study, we used prefrontal cortex (PFC) gene expression from a genetic rat model of MDD to inform probe set prioritization in PFC in a human post-mortem study to uncover genes and gene pathways associated with MDD. Gene expression differences between Flinders sensitive (FSL) and Flinders resistant (FRL) rat lines were statistically evaluated using the RankProd, non-parametric algorithm. Top ranking probe sets in the rat study were subsequently used to prioritize orthologous selection in a human PFC in a case?control post-mortem study on MDD from the Stanley Brain Consortium. Candidate genes in the human post-mortem study were then tested against a matched control sample using the RankProd method. A total of 1767 probe sets were differentially expressed in the PFC between FSL and FRL rat lines at (qless than or equal to0.001). A total of 898 orthologous probe sets was found on Affymetrix?s HG-U95A chip used in the human study. Correcting for the number of multiple, non-independent tests, 20 probe sets were found to be significantly dysregulated between human cases and controls at qless than or equal to0.05. These probe sets tagged the expression profile of 18 human genes (11 upregulated and seven downregulated). Using an integrative rat?human study, a number of convergent genes that may have a role in pathogenesis of MDD were uncovered. Eighty percent of these genes were functionally associated with a key stress response signalling cascade, involving NF-?B (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1) and ERK/MAPK, which has been systematically associated with MDD, neuroplasticity and neurogenesis

    The whole and its parts : why and how to disentangle plant communities and synusiae in vegetation classification

    Get PDF
    Most plant communities consist of different structural and ecological subsets, ranging from cryptogams to different tree layers. The completeness and approach with which these subsets are sampled have implications for vegetation classification. Non‐vascular plants are often omitted or sometimes treated separately, referring to their assemblages as “synusiae” (e.g. epiphytes on bark, saxicolous species on rocks). The distinction of complete plant communities (phytocoenoses or holocoenoses) from their parts (synusiae or merocoenoses) is crucial to avoid logical problems and inconsistencies of the resulting classification systems. We here describe theoretical differences between the phytocoenosis as a whole and its parts, and outline consequences of this distinction for practise and terminology in vegetation classification. To implement a clearer separation, we call for modifications of the International Code of Phytosociological Nomenclature and the EuroVegChecklist. We believe that these steps will make vegetation classification systems better applicable and raise the recognition of the importance of non‐vascular plants in the vegetation as well as their interplay with vascular plants

    Self-report of ADHD shows limited agreement with objective markers of persistence and remittance

    Get PDF
    Objective A controversial issue is whether self-report of symptoms and impairment is sufficient for diagnosis of attention-deficit/hyperactivity disorder (ADHD) in adolescents and adults in the absence of other informants, such as parents. The present study investigated how well self-report is reflected by cognitive-neurophysiological and actigraph measures, which we have previously shown to discriminate between ADHD persisters, remitters and controls using parent-report (Cheung et al., 2015; Brit J Psychiat http://dx.doi.org/10.1192/bjp.bp.114.145185). Method Parent- and self-reported ADHD symptoms and impairment, together with cognitive, electroencephalogram (EEG) frequency, event-related potential (ERP) and actigraph measures were obtained from 108 adolescents and young adults with childhood ADHD and 167 controls. Results Participants reported lower levels of ADHD symptoms and impairments than parents (p < 0.05) and the ADHD persistence rate based on self-report was low at 44%, compared to the persistence rate of 79% previously reported based on parent-report. Regression analyses showed that the objective measures distinguished poorly between ADHD persistent and remittent groups based on self-report, in contrast to findings based on parent-report (Cheung et al., 2015), although the measures differentiated well between ADHD persisters and controls. Correlation analyses revealed that self-reported impairment significantly correlated with fewer of the objective measures, despite parent- and self-reported symptoms showing similar correlations with the measures. Conclusions The findings show that self-reported ADHD outcome is not as well reflected by cognitive-neurophysiological and movement correlates as we previously found for parent-reported ADHD

    Increased gravitational force reveals the mechanical, resonant nature of physiological tremor

    Get PDF
    Human physiological hand tremor has a resonant component. Proof of this is that its frequency can be modified by adding mass. However, adding mass also increases the load which must be supported. The necessary force requires muscular contraction which will change motor output and is likely to increase limb stiffness. The increased stiffness will partly offset the effect of the increased mass and this can lead to the erroneous conclusion that factors other than resonance are involved in determining tremor frequency. Using a human centrifuge to increase head-to-foot gravitational field strength, we were able to control for the increased effort by increasing force without changing mass. This revealed that the peak frequency of human hand tremor is 99% predictable on the basis of a resonant mechanism. We ask what, if anything, the peak frequency of physiological tremor can reveal about the operation of the nervous system.This work was funded by a BBSRC Industry Interchange Award to J.P.R.S. and R.F.R. C.J.O. was funded by BBSRC grant BB/I00579X/1. C.A.V. was funded by A∗Midex (Aix-Marseille Initiative of Excellence

    Beneficial effects of acute high-intensity exercise on electrophysiological indices of attention processes in young adult men

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordBackground: Emerging research suggests that a single bout of aerobic exercise can improve cognition, brain function and psychological health. Our aim was to examine the effects of high-intensity exercise on cognitive-performance and brain measures of attention, inhibition and performance-monitoring across a test-battery of three cognitive tasks. Method: Using a randomised cross-over design, 29 young men completed three successive cognitive tasks (Cued Continuous Performance Task [CPT-OX]; Eriksen Flanker Task; four-choice reaction-time task [Fast Task]) with simultaneous electroencephalogram (EEG) recording before and after a 20-min high-intensity cycling exercise and resting control session. Cognitive-performance measures, EEG power and event-related potential measures, were obtained during the tasks. Random-intercept linear models were used to investigate the effects of exercise, compared to rest, on outcomes. Results: A single bout of exercise significantly (p < 0.05) increased the amplitude of the event-related potential Go P3, but had no effect on the contingent negative variation (CNV), Cue P3 or NoGo P3, during the CPT-OX. Delta power, recorded during the CPT-OX, also significantly increased after exercise, whereas there was no effect on cognitive-performance in this task. Exercise did not influence any cognitive-performance or brain measures in the subsequent Flanker or Fast Tasks. Conclusion: Acute high-intensity exercise improves brain-indices reflecting executive and sustained attention during task performance (Go P3 and delta activity), in the CPT-OX, but not anticipatory attention (Cue P3 and CNV) or response inhibition (NoGo P3) in young-adult men. Exercise had no effect on cognitive-performance or brain measures in the subsequent Flanker and Fast tasks, which may potentially be explained by the time delay after exercise.Medical Research Council (MRC)National Institute for Health Research (NIHR

    Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    Get PDF
    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In “cold” fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In “hot” fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP = 14. For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP ∼ 8. Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely suppressed by these two quasifission processes, since the sub-barrier heavy element yield is likely to be determined by the product of the probabilities of surviving each quasifission process.The authors acknowledge support from ARC Grants No. FL110100098, No. DP130101569, No. FT120100760, No. DE140100784, No. DP140101337, No. DP160101254, and No. DP170102318, and support by the Federal Government NCRIS program for operations of the ANU Heavy Ion Accelerator Facility

    Systematic study of quasifission characteristics and timescales in heavy element formation reactions

    No full text
    Superheavy elements can only be created in the laboratory by the fusion of two massive nuclei. Mass-angle distributions give the most direct information on the characteristics and time scales of quasifission, the major competitor to fusion in these reactions. The systematics of 42 mass-angle distributions provide information on the global characteristics of quasifission. Deviations from the systematics reveal the major role played by the nuclear structure of the two colliding nuclei in determining the reaction outcome, and in hindering or favouring heavy element production.The authors acknowledge operations support for the ANU Heavy Ion Accelerator Facility from NCRIS, and support from Dr. N. Lobanov and Dr. T. Kibedi and the ANU Heavy Ion Accelerator Facility staff in operating the Linac. Financial support from ARC grants DP130101569, DP140101337, FL110100098, FT120100760 and DE140100784 is acknowledged

    Long-distance dispersal explains the bipolar disjunction in Carex macloviana

    Get PDF
    PREMISE OF THE STUDY: The sedge Carex macloviana d’Urv presents a bipolar distribution. To clarify the origin of its distribution, we consider the four main hypotheses: long-distance dispersal (either by mountain hopping or by direct dispersal), vicariance, parallel evolution, and human introduction. METHODS: Phylogenetic, phylogeographic, and divergence time estimation analyses were carried out based on two nuclear ribosomal (ETS and ITS) regions, one nuclear single copy gene (CATP), and three plastid DNA regions (rps 16 and 5′ trn K introns, and psb A-trn H spacer), using Bayesian inference, maximum likelihood, and statistical parsimony. Bioclimatic data were used to characterize the climatic niche of C. macloviana. KEY RESULTS: C arex macloviana constitutes a paraphyletic species, dating back to the Pleistocene (0.62 Mya, 95% highest posterior density: 0.29–1.00 Mya). This species displays strong genetic structure between hemispheres, wiThtwo different lineages in the Southern Hemisphere and limited genetic differentiation in Northern Hemisphere populations. Also, populations from the Southern Hemisphere show a narrower climatic niche wiThregards to the Northern Hemisphere populations. CONCLUSIONS: C arex macloviana reached its bipolar distribution by long-distance dispersal, although it was not possible to determine whether it was caused by mountain hopping or by direct dispersal. While there is some support that Carex macloviana might have colonized the Northern Hemisphere by south-to-norThtranshemisphere dispersal during the Pleistocene, unlike the southwards dispersal pattern inferred for other bipolar Carex L. species, we cannot entirely rule out north-to-souThdispersion.Ministerio de Economía y Competitividad CGL2016-77401-
    corecore