11 research outputs found

    Modular Synthesis of Functional Nanoscale Coordination Polymers

    Get PDF
    The coordination-directed assembly of metal ions and organic bridging ligands has afforded a variety of bulk-scale hybrid materials with promising characteristics for a number of practical applications, such as gas storage and heterogeneous catalysis. Recently, so-called coordination polymers have emerged as a new class of hybrid nanomaterials. Herein, we highlight advances in the syntheses of both amorphous and crystalline nanoscale coordination polymers. We also illustrate how scaling down these materials to the nano-regime has enabled their use in a broad range of applications including catalysis, spin-crossover, templating, biosensing, biomedical imaging, and anticancer drug delivery. These results underscore the exciting opportunities of developing next-generation functional nanomaterials based on molecular components

    Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing

    Get PDF
    We describe in this paper a general method for synthesizing a new class of nanocomposites with a nanoscale metal-organic framework (NMOF) core and a silica shell. Silica shells of variable thickness were deposited on the NMOFs that had been surface-modified with polyvinylpyrrolidone (PVP) using a sol-gel procedure. The NMOF core of the nanocomposite could be completely removed (via dissolution) at low pH to afford hollow silica shells with varied thickness and aspect ratios. We also showed that the silica shell of such nanocomposites significantly stabilized the NMOF core against dissolution, thus demonstrating the ability to control the release of metal constituents from such silica-coated NMOFs. The silica shell was further functionalized with a silylated Tb-EDTA monoamide derivative for the luminescence sensing of dipicolinic acid (DPA), which is a major constituent of many pathogenic spore-forming bacteria. Owing to the tunability of NMOF composition and morphology, the present approach should allow for the synthesis of not only interesting nanoshells that are not accessible with presently available templates but also novel core-shell hybrid nanostructures for future imaging, sensing, and drug delivery applications

    Nanoscale Metal−Organic Frameworks as Potential Multimodal Contrast Enhancing Agents

    Get PDF
    Nanoscale metal-organic frameworks (NMOFs) based on Gd3+ centers and benzenedicarboxylate and benzenetricarboxylate bridging ligands were synthesized using reverse microemulsions and characterized using SEM, PXRD, and TGA. These NMOFs exhibit extraordinarily large R1 and R2 relaxivities because of the presence of up to tens of millions of Gd3+ centers in each nanoparticle and are thus efficient T1 and T2 contrast agents for MRI. The NMOFs can also be made highly luminescent by doping with Eu3+ or Tb3+ centers. The results from this work suggest that NMOFs can be used as potential contrast agents for multimodal imaging

    Biodegradable Polysilsesquioxane Nanoparticles as Efficient Contrast Agents for Magnetic Resonance Imaging

    Get PDF
    Polysilsesquioxane (PSQ) nanoparticles are crosslinked homopolymers formed by condensation of functionalized trialkoxysilanes, and provide an interesting platform for developing biologically and biomedically relevant nanomaterials. In this work, the design and synthesis of biodegradable PSQ particles with extremely high payloads of paramagnetic Gd(III) centers is explored, for use as efficient contrast agents for magnetic resonance imaging (MRI). Two new bis(trialkoxysilyl) derivatives of Gd(III) diethylenetriamine pentaacetate (Gd-DTPA) containing disulfide linkages are synthesized and used to form biodegradable Gd-PSQ particles by base-catalyzed condensation reactions in reverse microemulsions. The Gd-PSQ particles, PSQ-1 and PSQ-2, carry 53.8 wt% and 49.3 wt% of Gd-DTPA derivatives, respectively. In addition, the surface carboxy groups on the PSQ-2 particles can be modified with polyethylene glycol (PEG) and the anisamide (AA) ligand to enhance biocompatibility and cell uptake, respectively. The Gd-PSQ particles are readily degradable to release the constituent Gd(III) chelates in the presence of endogenous reducing agents such as cysteine and glutathione. The MR relaxivities of the Gd-PSQ particles are determined using a 3T MR scanner, with r1 values ranging from 5.9 to 17.8 mMs−1 on a per-Gd basis. Finally, the high sensitivity of the Gd-PSQ particles as T1-weighted MR contrast agents is demonstrated with in vitro MR imaging of human lung and pancreatic cancer cells. The enhanced efficiency of the anisamide-functionalized PSQ-2 particles as a contrast agent is corroborated by both confocal laser scanning microscopy imaging and ICP-MS analysis of Gd content in vitro

    Self-Assembled Hybrid Nanoparticles for Cancer-Specific Multimodal Imaging

    Get PDF
    A layer-by-layer (LbL) polyelectrolyte deposition strategy is used to prepare multifunctional nanoparticles (MFNPs) with multimodal imaging capabilities. Alternating treatment of hybrid silica nanoparticles (NP0) containing a luminescent [Ru(bpy)3]Cl2 core and anionic monolayer coating of the Gd−(siloxylpropyl)diethylenetriamine tetraacetate (Gd−DTTA) complex with cationic Gd(III)−DOTA oligomer 1 and anionic poly(styrene sulfonate) (PSS) led to the deposition of multilayers of 1 and PSS via electrostatic interactions. This LbL deposition technique offers a superb strategy for the assembly of hybrid nanoparticles with imbedded luminophores and very high MR relaxivities. The PSS-terminated multilayered nanoparticles can be noncovalently functionalized with targeting peptides that carry positive charges under physiological conditions via electrostatic interactions to lead to cancer-specific MFNPs for optical and MR imaging of HT-29 human colon cancer cells. The generality of this approach should allow the de..

    Pluralism of Competition Policy Paradigms and the Call for Regulatory Diversity

    Full text link

    Development of Inorganic-Organic Hybrid Nanomaterials for Biological and Biomedical Applications

    Get PDF
    Despite the great potential of combining inorganic and organic components to afford materials with unique properties, the development of so-called “hybrid” nanomaterials is a relatively new area of materials science. In this work, we outline the syntheses and characterization of several new classes of hybrid nanomaterials with potential applications in biomedical imaging and therapy. First, we use a microemulsion-based method to prepare gadolinium-based nanoscale metal-organic frameworks (NMOFs) as novel Magnetic Resonance Imaging (MRI) contrast enhancing agents. We have also developed a method to coat the NMOFs with shells of amorphous silica, and illustrate the potential utility of these core-shell structures as probes for the ratiomeric luminescence detection of analytes in solution and as templates for new composite nanomaterials. Second, we use a general strategy to prepicipate nanoscale coordination polymer (NCP) particles composed of platinum-based anticancer drugs from a solution of the components via the addition of a poor solvent. The release of the drug species is controlled by varying the thickness of an amorphous silica shell, and the anticancer efficacies of the drug formulations are demonstrated against multiple cancer cell lines in vitro. Lastly, we have developed several unique silicon oxide-based nanoparticle formulations, including core-shell and polysilsesquioxane structures, which have multifunctional imaging capabilities superior to agents that are currently used in the clinic
    corecore