139 research outputs found
Scientist\u27s Warning on Climate Change and Insects
Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediate threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists’ warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort
Scientists' warning on climate change and insects
Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort.</p
Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage
Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance.CBS was supported by scholarships from CONACYT and
The Australian National University. MR was supported by
the Max Planck Societ
Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea)
Levels of plant secondary metabolites are not static and often change in relation to plant ontogeny. They also respond to abiotic and biotic changes in the environment, e.g., they often increase in response to biotic stress, such as herbivory. In contrast with short-lived annual plant species, especially those with growing periods of less than 2–3 months, investment in defensive compounds of vegetative tissues in biennial and perennial species may also vary over the course of an entire growing season. In garden experiments, we investigated the dynamics of secondary metabolites, i.e. glucosinolates (GSLs) in the perennial wild cabbage (Brassica oleracea), which was grown from seeds originating from three populations that differ in GSL chemistry. We compared temporal long-term dynamics of GSLs over the course of two growing seasons and short-term dynamics in response to herbivory by Pieris rapae caterpillars in a more controlled greenhouse experiment. Long-term dynamics differed for aliphatic GSLs (gradual increase from May to December) and indole GSLs (rapid increase until mid-summer after which concentrations decreased or stabilized). In spring, GSL levels in new shoots were similar to those found in the previous year. Short-term dynamics in response to herbivory primarily affected indole GSLs, which increased during the 2-week feeding period by P. rapae. Herbivore-induced changes in the concentrations of aliphatic GSLs were population-specific and their concentrations were found to increase in primarily one population only. We discuss our results considering the biology and ecology of wild cabbage
Symbionts protect aphids from parasitic wasps by attenuating herbivore-induced plant volatiles
Plants respond to insect attack by releasing blends of volatile chemicals that attract their herbivores' specific natural enemies, while insect herbivores may carry endosymbiotic microorganisms that directly improve herbivore survival after natural enemy attack. Here we demonstrate that the two phenomena can be linked. Plants fed upon by pea aphids release volatiles that attract parasitic wasps, and the pea aphid can carry facultative endosymbiotic bacteria that prevent the development of the parasitic wasp larva and thus markedly improve aphid survival after wasp attack. We show that these endosymbionts also attenuate the systemic release of volatiles by plants after aphid attack, reducing parasitic wasp recruitment and increasing aphid fitness. Our results reveal a novel mechanism through which symbionts can benefit their hosts and emphasise the importance of considering the microbiome in understanding insect ecological interactions. (Résumé d'auteur
Defensive insect symbiont leads to cascading extinctions and community collapse
Animals often engage in mutualistic associations with microorganisms that protect them from predation, parasitism or pathogen infection. Studies of these interactions in insects have mostly focussed on the direct effects of symbiont infection on natural enemies without studying community-wide effects. Here, we explore the effect of a defensive symbiont on population dynamics and species extinctions in an experimental community composed of three aphid species and their associated specialist parasitoids. We found that introducing a bacterial symbiont with a protective (but not a non-protective) phenotype into one aphid species led to it being able to escape from its natural enemy and increase in density. This changed the relative density of the three aphid species which resulted in the extinction of the two other parasitoid species. Our results show that defensive symbionts can cause extinction cascades in experimental communities and so may play a significant role in the stability of consumer-herbivore communities in the field. (Résumé d'auteur
Communities of nematodes, bacteria and fungi differ among soils of different wild cabbage populations
Plants exhibit significant variation in morphological and chemical traits of shoots and roots in response to an array of biotic and abiotic selection pressures, and this variation in turn affects their interactions with the biotic and abiotic environment. Thus far, most studies examining these interactions have focused on the aboveground domain, which is easier to study than the belowground domain. However, soil organisms significantly affect plant fitness directly through mutualisms e.g. growth promotion, or antagonisms e.g. herbivory and disease. Natural populations of wild Brassica oleracea L. growing along the south coastline of Great Britain exhibit significant differences in growth form and secondary chemistry. Studies in the field have shown that these differences affect aboveground plant-insect interactions, whereas soil communities have not been explored. We sampled belowground communities of nematodes, bacteria and fungi associated with roots, rhizosphere and bulk soil in five coastal wild cabbage populations in Dorset, England, and found significant differences among these communities. Site-related differences in nematode community composition were primarily found for nematodes in bulk soil and were consistent over two years of sampling. Nematode communities in roots of wild cabbage did not significantly differ across the cabbage populations but did differ between the two years. Results for communities in rhizosphere soil were spatially and temporally variable. The composition of nematode communities in cabbage roots differed strongly from those in the rhizosphere and bulk soil, showing that plants attract a subset of nematodes from the bulk soil community. For microbes, we analysed only rhizosphere samples, and found that fungal communities differed more strongly among plant populations than bacterial communities. Thus, while there is spatio-temporal variation in belowground communities, soil and/or plant properties differentially affect the assembly of nematodes, fungi and bacteria
Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea)
The effect of direct chemical defences in plants on the performance of insect herbivores and their natural enemies has received increasing attention over the past 10Â years. However, much less is known about the scale at which this variation is generated and maintained, both within and across populations of the same plant species. This study compares growth and development of the large cabbage butterfly, Pieris brassicae, and its gregarious pupal parasitoid, Pteromalus puparum, on three wild populations [Kimmeridge (KIM), Old Harry (OH) and Winspit (WIN)] and two cultivars [Stonehead (ST), and Cyrus (CYR)] of cabbage, Brassica oleracea. The wild populations originate from the coast of Dorset, UK, but grow in close proximity with one another. Insect performance and chemical profiles were made from every plant used in the experiment. Foliar glucosinolates (GS) concentrations were highest in the wild plants in rank order WINÂ >Â OHÂ >Â KIM, with lower levels found in the cultivars. Caterpillar-damaged leaves in the wild cabbages also had higher GS levels than undamaged leaves. Pupal mass in P. brassicae varied significantly among populations of B. oleracea. Moreover, development time in the host and parasitoid were correlated, even though these stages are temporally separated. Parasitoid adult dry mass closely approximated the development of its host. Multivariate statistics revealed a correlation between pupal mass and development time of P. brassicae and foliar GS chemistry, of which levels of neoglucobrassicin appeared to be the most important. Our results show that there is considerable variation in quantitative aspects of defensive chemistry in wild cabbage plants that is maintained at very small spatial scales in nature. Moreover, the performance of the herbivore and its parasitoid were both affected by differences in plant quality
Population-Related Variation in Plant Defense more Strongly Affects Survival of an Herbivore than Its Solitary Parasitoid Wasp
The performance of natural enemies, such as parasitoid wasps, is affected by differences in the quality of the host’s diet, frequently mediated by species or population-related differences in plant allelochemistry. Here, we compared survival, development time, and body mass in a generalist herbivore, the cabbage moth, Mamestra brassicae, and its solitary endoparasitoid, Microplitis mediator, when reared on two cultivated (CYR and STH) and three wild (KIM, OH, and WIN) populations of cabbage, Brassica oleracea. Plants either were undamaged or induced by feeding of larvae of the cabbage butterfly, Pieris rapae. Development and biomass of M. brassicae and Mi. mediator were similar on both cultivated and one wild cabbage population (KIM), intermediate on the OH population, and significantly lower on the WIN population. Moreover, development was prolonged and biomass was reduced on herbivore-induced plants. However, only the survival of parasitized hosts (and not that of healthy larvae) was affected by induction. Analysis of glucosinolates in leaves of the cabbages revealed higher levels in the wild populations than cultivars, with the highest concentrations in WIN plants. Multivariate statistics revealed a negative correlation between insect performance and total levels of glucosinolates (GS) and levels of 3-butenyl GS. However, GS chemistry could not explain the reduced performance on induced plants since only indole GS concentrations increased in response to herbivory, which did not affect insect performance based on multivariate statistics. This result suggests that, in addition to aliphatic GS, other non-GS chemicals are responsible for the decline in insect performance, and that these chemicals affect the parasitoid more strongly than the host. Remarkably, when developing on WIN plants, the survival of Mi. mediator to adult eclosion was much higher than in its host, M. brassicae. This may be due to the fact that hosts parasitized by Mi. mediator pass through fewer instars, and host growth is arrested when they are only a fraction of the size of healthy caterpillars. Certain aspects of the biology and life-history of the host and parasitoid may determine their response to chemical challenges imposed by the food plant
Herbivore-Mediated Effects of Glucosinolates on Different Natural Enemies of a Specialist Aphid
The cabbage aphid Brevicoryne brassicae is a specialist herbivore that sequesters glucosinolates from its host plant as a defense against its predators. It is unknown to what extent parasitoids are affected by this sequestration. We investigated herbivore-mediated effects of glucosinolates on the parasitoid wasp Diaeretiella rapae and the predator Episyrphus balteatus. We reared B. brassicae on three ecotypes of Arabidopsis thaliana that differ in glucosinolate content and on one genetically transformed line with modified concentrations of aliphatic glucosinolates. We tested aphid performance and the performance and behavior of both natural enemies. We correlated this with phloem and aphid glucosinolate concentrations and emission of volatiles. Brevicoryne brassicae performance correlated positively with concentrations of both aliphatic and indole glucosinolates in the phloem. Aphids selectively sequestered glucosinolates. Glucosinolate concentration in B. brassicae correlated negatively with performance of the predator, but positively with performance of the parasitoid, possibly because the aphids with the highest glucosinolate concentrations had a higher body weight. Both natural enemies showed a positive performance-preference correlation. The predator preferred the ecotype with the lowest emission of volatile glucosinolate breakdown products in each test combination, whereas the parasitoid wasp preferred the A. thaliana ecotype with the highest emission of these volatiles. The study shows that there are differential herbivore-mediated effects of glucosinolates on a predator and a parasitoid of a specialist aphid that selectively sequesters glucosinolates from its host plant
- …