300 research outputs found

    The Cargo Fare Class Mix problem for an intermodal corridor: revenue management in synchromodal container transportation

    Get PDF
    The intermodal hinterland transportation of maritime containers is under pressure from port authorities and shippers to achieve a more integrated, efficient network operation. Current optimisation methods in literature yield limited results in practice, though, as the transportation product structure limits the flexibility to optimise network logistics. Synchromodality aims to overcome this by a new product structure based on differentiation in price and lead time. Each product is considered as a fare class with a related service level, allowing to target different customer segments and to use revenue management for maximising revenue. However, higher priced fare classes come with tighter planning restrictions and must be carefully balanced with lower priced fare classes to match available capacity and optimise network utilisation. Based on the developments of intermodal networks in North West European, such as the network of European Gateway Services, the Cargo Fare Class Mix problem is proposed. Its purpose is to set limits for each fare class at a tactical level, such that the expected revenue is maximised, considering the available capacity at the operational level. Setting limits at the tactical level is important, as it reflects the necessity of long-term agreements between the transportation provider and its customers. A solution method for an intermodal corridor is proposed, considering a single intermodal connection towards a region with multiple destinations. The main purpose of the article is to show that using a limit on each fare class increases revenue and reliability, thereby outperforming existing fare class mix policies, such as Littlewood

    Real-time Container Transport Planning with Decision Trees based on Offline Obtained Optimal Solutions

    Get PDF
    Hinterland networks for container transportation require planning methods in order to increase efficiency and reliability of the inland road, rail and waterway connections. In this paper we aim to derive real-time decision rules for suitable allocations of containers to inland services by analysing the solution structure of a centralised optimisation method used offline on historic data. The decision tree can be used in a decision support system (DSS) for instantaneously allocating incoming orders to suitable services, without the need for continuous planning updates. Such a DSS is beneficial, as it is easy to implement in the current practice of container transportation. Earlier proposed centralised methods can find the optimal solution for the intermodal inland transportation problem in retrospect, but are not suitable when information becomes gradually available. The main contributions are threefold: firstly, a structured method for creating decision trees from optimal solutions is proposed. Secondly, an innovative method is used for obtaining multiple equivalent optimal solutions to prevent overfitting of the decision tree. And finally, a structured analysis of three error types is presented for assessing the quality of an obtained tree. A case study illustrates the method’s purpose by comparing the quality of the resulting plan with alternative methods

    Service network design for an intermodal container network with flexible due dates/times and the possibility of using subcontracted transport

    Get PDF
    An intermodal container transportation network is being developed between Rotterdam and several inland terminals in North West Europe: the EUROPEAN GATEWAY SERVICES (EGS) network. This network is developed and operated by the seaports of EUROPE CONTAINER TERMINALS (ECT). To use this network cost-efficiently, a centralized planning of the container transportation is required, to be operated by the seaport. In this paper, a new mathematical model is proposed for the service network design. The model uses a combination of a path-based formulation and a minimum flow network formulation. It introduces two new features to the intermodal network-planning problem. Firstly, overdue deliveries are penalized instead of prohibited. Secondly, the model combines self-operated and subcontracted services. The service network design considers the network-planning problem at a tactical level: the optimal service schedule between the given network terminals is determined. The model considers self-operated or subcontracted barge and rail services as well as transport by truck. The model is used for the service network design of the EGS network. For this case, the benefit of using container transportation with multiple legs and intermediate transfers is studied. Also, a preliminary test of the influence of the new aspects of the model is done. The preliminary results indicate that the proposed model is suitable for the service network design in modern intermodal container transport networks. Also, the results suggest that a combined business model for the network transport and terminals is worth investigating further, as the transit costs can be reduced with lower transfer costs

    Impact and relevance of transit disturbances on planning in intermodal container networks

    Get PDF
    __Abstract__ An intermodal container transportation network is being developed between Rotterdam and several inland terminals in North West Europe: the European Gateway Services network. This network is developed and operated by the sea terminals of Europe Container Terminals (ECT). To use this network cost-efficiently, centralised planning by the sea terminal of the container transportation is required. For adequate planning it is important to adapt to occurring disturbances. In this paper, a new mathematical model is proposed: the Linear Container Allocation model with Time-restrictions (LCAT). This model is used for determining the influence of three main types of transit disturbances on the network performance: early departure, late departure, and cancellation of inland services. The influence of a disturbance is measured in two ways. The impact measures the additional cost incurred by an updated planning in case of a disturbance. The relevance measures the cost difference between a fully updated and a locally updated plan. With the results of the analysis, key service properties of disturbed services that result in a high impact or high relevance can be determined. Based on this, the network operator can select focus areas to prevent disturbances with high impact and to improve the planning updates in case of disturbances with high relevance. In a case study of the EGS network, the impact and relevance of transit disturbances on all network services are assessed

    Effects of atmospheric pressure plasma on dye uptake by the surface of wool

    Full text link
    A woven pure wool fabric has been exposed to atmospheric pressure plasma for 30 seconds using a pilot-scale. commercial machine. X-ray photoelectron spectral data revealed large increases in oxygen and nitrogen. and a large reduction in carbon. on the surfaces of the plasma-treated fibres. A CIN ratio of 3.55 for plasma-treated wool was consistent with removal of the covalently-bound fatty acids from the surface of the cuticle cells. resulting in exposure of the proteinaceous epicuticle. Dye staining experiments revealed that the back of the fabric had received the same, uniform level of treatment as the face, despite the fact that only the face had been directly exposed to the plasma. Dyes (1 % oww) were applied to fabric at 50&deg;C (liquor ratio =40: 1) and pH values from 3 to 6. The relatively low temperature of 50&deg;C was selected in order to accentuate the effects of plasma on the rate of dye uptake. Under these conditions, dye was adsOibed onto the fibre surfaces, with very little penetration into the fibres. Effects of the plasma treatment on the rate of dyes adsorption were dyespecific. No significant effects of plasma on the rate of dye uptake were observed with relatively hydrophobic dyes, but hydrophilic dyes were adsorbed more rapidly by the plasmatreated fabric. It would appear that for more hydrophobic dyes, hydrophobic effects are more important for the adsorption of dyes by the plasma-treated fibres, even though these fibres were quite hydrophilic. On the other hand. it is concluded that for more hydrophilic dyes, electrostatic effects are more important for adsorption by the plasma-treated fibre.<br /
    • …
    corecore