70 research outputs found

    Casimir operators of the exceptional group G2

    Get PDF
    We calculate the degree 2 and 6 Casimirs operators in explicit form, with the generators of G2 written in terms of the subalgebra A2Comment: 10 p., MAD/TH/93-05, (LaTex

    The Charm Content of W+1 Jet Events as a Probe of the Strange Quark Distribution Function

    Full text link
    We investigate the prospects for measuring the strange quark distribution function of the proton in associated WW plus charm quark production at the Tevatron. The W+cW+c quark signal produced by strange quark -- gluon fusion, sg→W−csg\rightarrow W^-c and sˉg→W+cˉ\bar sg\rightarrow W^+\bar c, is approximately 5\% of the inclusive W+1W+1 jet cross section for jets with a transverse momentum pT(j)>10p_T(j)>10~GeV. We study the sensitivity of the WW plus charm quark cross section to the parametrization of the strange quark distribution function, and evaluate the various background processes. Strategies to identify charm quarks in CDF and D\O \ are discussed. For a charm tagging efficiency of about 10\% and an integrated luminosity of 30~pb−1^{-1} or more, it should be possible to constrain the strange quark distribution function from W+cW+c production at the Tevatron.Comment: submitted to Phys. Lett. B, Latex, 12 pages + 4 postscript figures encoded with uufile, FSU-HEP-930812, MAD/TH/93-6, MAD/PH/788. A postscript file with text and embedded figures is available via anonymous ftp at hepsg1.physics.fsu.edu, file is /pub/keller/fsu-hep-930812.p

    Ruling Out a Strongly-Interacting Standard Higgs Model

    Get PDF
    Previous work has suggested that perturbation theory is unreliable for Higgs- and Goldstone-boson scattering, at energies above the Higgs mass, for relatively small values of the Higgs quartic coupling λ(ÎŒ)\lambda(\mu). By performing a summation of nonlogarithmic terms, we show that perturbation theory is in fact reliable up to relatively large coupling. This eliminates the possibility of a strongly-interacting standard Higgs model at energies above the Higgs mass, complementing earlier studies which excluded strong interactions at energies near the Higgs mass. The summation can be formulated in terms of an appropriate scale in the running coupling, ÎŒ=s/e≈s/2.7\mu=\sqrt{s}/e\approx\sqrt{s}/2.7, so it can easily be incorporated in renormalization-group improved tree-level amplitudes as well as higher-order calculations.Comment: 29 pages, 6 figures. The complete paper including figures is also available via WWW at http://www.physik.tu-muenchen.de/tumphy/d/T30d/PAPERS/TUM-HEP-236-96.ps.g

    Matching conditions and Higgs mass upper bounds revisited

    Get PDF
    Matching conditions relate couplings to particle masses. We discuss the importance of one-loop matching conditions in Higgs and top-quark sector as well as the choice of the matching scale. We argue for matching scales ÎŒ0,t≃mt\mu_{0,t} \simeq m_t and ÎŒ0,H≃max[mt,MH]\mu_{0,H} \simeq max[ m_t, M_H ]. Using these results, the two-loop Higgs mass upper bounds are reanalyzed. Previous results for Λ≈\Lambda\approx few TeV are found to be too stringent. For Λ=1019\Lambda=10^{19} GeV we find MH<180±4±5M_H < 180 \pm 4\pm 5 GeV, the first error indicating the theoretical uncertainty, the second error reflecting the experimental uncertainty due to mt=175±6m_t=175\pm6 GeV.Comment: 20 pages, 6 figures; uses epsf and rotate macro

    Testing nonperturbative techniques in the scalar sector of the standard model

    Get PDF
    We discuss the current picture of the standard model's scalar sector at strong coupling. We compare the pattern observed in the scalar sector in perturbation theory up to two-loop with the nonperturbative solution obtained by a next-to-leading order 1/N expansion. In particular, we analyze two resonant Higgs scattering processes, ff -> H -> f'f' and ff -> H -> ZZ, WW. We describe the ingredients of the nonperturbative calculation, such as the tachyonic regularization, the higher order 1/N intermediate renormalization, and the numerical methods for evaluating the graphs. We discuss briefly the perspectives and usefulness of extending these nonperturbative methods to other theories

    Heavy-Higgs Lifetime at Two Loops

    Get PDF
    The Standard-Model Higgs boson with mass MH>>2MZ M_H >> 2M_Z decays almost exclusively to pairs of WW and ZZ bosons. We calculate the dominant two-loop corrections of O(GF2MH4) O( G_F^2 M_H^4 ) to the partial widths of these decays. In the on-mass-shell renormalization scheme, the correction factor is found to be 1+14.6 1 + 14.6 % (M_H/TeV)^2 + 16.9 % (M_H/TeV)^4 , where the second term is the one-loop correction. We give full analytic results for all divergent two-loop Feynman diagrams. A subset of finite two-loop vertex diagrams is computed to high precision using numerical techniques. We find agreement with a previous numerical analysis. The above correction factor is also in line with a recent lattice calculation.Comment: 26 pages, 6 postscript figures. The complete paper including figures is also available via WWW at http://www.physik.tu-muenchen.de/tumphy/d/T30d/PAPERS/TUM-HEP-247-96.ps.g

    Vacuum Stability, Perturbativity, and Scalar Singlet Dark Matter

    Get PDF
    We analyze the one-loop vacuum stability and perturbativity bounds on a singlet extension of the Standard Model (SM) scalar sector containing a scalar dark matter candidate. We show that the presence of the singlet-doublet quartic interaction relaxes the vacuum stability lower bound on the SM Higgs mass as a function of the cutoff and lowers the corresponding upper bound based on perturbativity considerations. We also find that vacuum stability requirements may place a lower bound on the singlet dark matter mass for given singlet quartic self coupling, leading to restrictions on the parameter space consistent with the observed relic density. We argue that discovery of a light singlet scalar dark matter particle could provide indirect information on the singlet quartic self-coupling.Comment: 25 pages, 10 figures; v2 - fixed minor typos; v3 - added to text discussions of other references, changed coloring of figures for easier black and white viewin

    The Higgs resonance in vector boson scattering

    Get PDF
    A heavy Higgs resonance is described in a representation-independent way which is valid for the whole energy range of 2 -> 2 scattering processes, including the asymptotic behavior at low and high energies. The low-energy theorems which follow from to the custodial SU_2 symmetry of the Higgs sector restrict the possible parameterizations of the lineshape that are consistent in perturbation theory. Matching conditions are specified which are necessary and sufficient to relate the parameters arising in different expansions. The construction is performed explicitly up to next-to-leading order.Comment: 25 pages, revtex, uses epsf, amssym

    Differences Between the Pole and On-Shell Masses and Widths of the Higgs Boson

    Full text link
    The differences between the on-shell mass and width of the Higgs boson and their pole counterparts are evaluated in leading order. For a heavy Higgs boson, they are found to be sensitive functions of the gauge parameter and become numerically large over a class of gauges that includes the unitary gauge. For a light Higgs boson, the differences remain small in all gauges. The pinch-technique mass and width are found to be close to their pole counterparts over a large range of Higgs boson masses.Comment: 9 pages (Latex), 3 figures (Postscript
    • 

    corecore