3,335 research outputs found
Accelerated expansion in modified gravity with a Yukawa-like term
We discuss the Palatini formulation of modified gravity including a
Yukawa-like term. It is shown that in this formulation, the Yukawa term offers
an explanation for the current exponential accelerated expansion of the
universe and reduces to the standard Friedmann cosmology in the appropriate
limit. We then discuss the scalar-tensor formulation of the model as a metric
theory and show that the Yukawa term predicts a power-law acceleration at
late-times. The Newtonian limit of the theory is also discussed in context of
the Palatini formalism.Comment: 9 pages, 2 figures, to appear in IJMP
Dark Energy Accretion onto a Black Hole in an Expanding Universe
By using the solution describing a black hole embedded in the FLRW universe,
we obtain the evolving equation of the black hole mass expressed in terms of
the cosmological parameters. The evolving equation indicates that in the
phantom dark energy universe the black hole mass becomes zero before the Big
Rip is reached.Comment: 7 pages, no figures, errors is correcte
Possible role of the phagocytic proteinases, cathepsin B and elastas, in orthotopic liver transplantation
Kein Inhaltsverzeichnis
Naked Singularity in a Modified Gravity Theory
The cosmological constant induced by quantum fluctuation of the graviton on a
given background is considered as a tool for building a spectrum of different
geometries. In particular, we apply the method to the Schwarzschild background
with positive and negative mass parameter. In this way, we put on the same
level of comparison the related naked singularity (-M) and the positive mass
wormhole. We discuss how to extract information in the context of a f(R)
theory. We use the Wheeler-De Witt equation as a basic equation to perform such
an analysis regarded as a Sturm-Liouville problem . The application of the same
procedure used for the ordinary theory, namely f(R)=R, reveals that to this
approximation level, it is not possible to classify the Schwarzschild and its
naked partner into a geometry spectrum.Comment: 8 Pages. Contribution given to DICE 2008. To appear in the
proceeding
Possible role of extracellularly released phagocytic proteinases in the coagulation disorder during liver transplantation
Orthotopic liver transplantation is frequently associated with a complex coagulation disorder, influencing the outcome of the procedure. In this respect, disseminated intravascular coagulation (DIC) had been suggested to be of causative importance for bleeding complications after reperfusion of the liver graft. In 10 consecutive patients undergoing orthotopic liver transplantations, we studied the occurrence of two phagocyte proteinases of different origin in the graft liver perfus-ate and in systemic blood during the operation, as well as their effects on hemostasis. As compared with plasma samples taken at the end of the anhepatic phase, highly significant increases of cathepsin B and thrombin-anti-thrombin III complexes (TAT), as well as highly significant decreases in antithrombin III, protein C, and C1-inhibitor were observed in graft liver perfusate. Von Willebrand factor and fibrinogen were slightly decreased, whereas the elastase-alpha1 proteinase inhibitor complexes (EPI) were elevated. In plasma the activity of cathepsin B remained unchanged during the prereperfusion phases, but immediately after revascularization of the graft this cysteine proteinase increased. The EPI showed a gradual increase in plasma during the preanhepatic and anhepatic phases but a more pronounced increase in the reperfusion phase. In parallel with the rise in these two proteinases TAT increased and the activities of antithrombin III and C1-inhibitor in plasma decreased after reperfusion. At 12 hr after revascularization plasma levels of TAT, antithrombin III, and C1-inhibitor had returned to the prereperfusion ranges, whereas cathepsin B and EPI were significantly above the baseline levels. These observations are consistent with the hypothesis that extracellularly released lysosomal proteinases may play a role in the development of a DIC-like constellation, including thrombin formation after revascularization of the liver graft. For the first time we could prove the occurrence of phagocyte proteinases in graft liver perfusate and evaluate the importance of these proteinases for the understanding of the pathophysiology leading to bleeding complications in patients undergoing orthotopic liver transplantation
Constraining Dark Energy and Cosmological Transition Redshift with Type Ia Supernovae
The property of dark energy and the physical reason for acceleration of the
present universe are two of the most difficult problems in modern cosmology.
The dark energy contributes about two-thirds of the critical density of the
present universe from the observations of type-Ia supernova (SNe Ia) and
anisotropy of cosmic microwave background (CMB).The SN Ia observations also
suggest that the universe expanded from a deceleration to an acceleration phase
at some redshift, implying the existence of a nearly uniform component of dark
energy with negative pressure. We use the ``gold'' sample containing 157 SNe Ia
and two recent well-measured additions, SNe Ia 1994ae and 1998aq to explore the
properties of dark energy and the transition redshift. For a flat universe with
the cosmological constant, we measure , which
is consistent with Riess et al. The transition redshift is
. We also discuss several dark energy models that
define the of the parameterized equation of state of dark energy
including one parameter and two parameters ( being the ratio of the
pressure to energy density). Our calculations show that the accurately
calculated transition redshift varies from to
across these models. We also calculate the minimum
redshift at which the current observations need the universe to
accelerate.Comment: 16 pages, 5 figures, 1 tabl
Is there Evidence for a Hubble bubble? The Nature of Type Ia Supernova Colors and Dust in External Galaxies
We examine recent evidence from the luminosity-redshift relation of Type Ia
Supernovae (SNe Ia) for the detection of a ``Hubble bubble'' --
a departure of the local value of the Hubble constant from its globally
averaged value \citep{Jha:07}. By comparing the MLCS2k2 fits used in that study
to the results from other light-curve fitters applied to the same data, we
demonstrate that this is related to the interpretation of SN color excesses
(after correction for a light-curve shape-color relation) and the presence of a
color gradient across the local sample. If the slope of the linear relation
() between SN color excess and luminosity is fit empirically, then the
bubble disappears. If, on the other hand, the color excess arises purely from
Milky Way-like dust, then SN data clearly favors a Hubble bubble. We
demonstrate that SN data give , instead of the
one would expect from purely Milky-Way-like dust. This suggests that either SN
intrinsic colors are more complicated than can be described with a single
light-curve shape parameter, or that dust around SN is unusual. Disentangling
these possibilities is both a challenge and an opportunity for large-survey SN
Ia cosmology.Comment: Further information and data at
http://qold.astro.utoronto.ca/conley/bubble/ Accepted for publication in ApJ
Late-Time Photometry of Type Ia Supernova SN 2012cg Reveals the Radioactive Decay of Co
Seitenzahl et al. (2009) have predicted that roughly three years after its
explosion, the light we receive from a Type Ia supernova (SN Ia) will come
mostly from reprocessing of electrons and X-rays emitted by the radioactive
decay chain , instead of positrons from the
decay chain that dominates the SN light at
earlier times. Using the {\it Hubble Space Telescope}, we followed the light
curve of the SN Ia SN 2012cg out to days after maximum light. Our
measurements are consistent with the light curves predicted by the contribution
of energy from the reprocessing of electrons and X-rays emitted by the decay of
Co, offering evidence that Co is produced in SN Ia explosions.
However, the data are also consistent with a light echo mag fainter
than SN 2012cg at peak. Assuming no light-echo contamination, the mass ratio of
Ni and Ni produced by the explosion, a strong constraint on any
SN Ia explosion model, is , roughly twice Solar. In
the context of current explosion models, this value favors a progenitor white
dwarf with a mass near the Chandrasekhar limit.Comment: Updated to reflect the final version published by ApJ. For a video
about the paper, see https://youtu.be/t3pUbZe8wq
A Possible Late Time CDM-like Background Cosmology in Relativistic MOND Theory
In the framework of Relativistic MOND theory (TeVeS), we show that a late
time background CDM cosmology can be attained by choosing a specific
that also meets the requirement for the existence of Newtonian and
MOND limits. We investigate the dynamics of the scalar field under our
chosen and show that the "slow roll" regime of corresponds to a
dynamical attractor, where the whole system reduces to CDM cosmology.Comment: Major revisions made; Matching the version to be published in IJMP
Constraints on holographic dark energy models using the differential ages of passively evolving galaxies
Using the absolute ages of passively evolving galaxies observed at different
redshifts, one can obtain the differential ages, the derivative of redshift
with respect to the cosmic time (i.e. ). Thus, the
Hubble parameter can be measured through the relation . By comparing the measured Hubble parameter at different
redshifts with the theoretical one containing free cosmological parameters, one
can constrain current cosmological models. In this paper, we use this method to
present the constraint on a spatially flat Friedman-Robert-Walker Universe with
a matter component and a holographic dark energy component, in which the
parameter plays a significant role in this dark energy model. Firstly we
consider three fixed values of =0.6, 1.0 and 1.4 in the fitting of data. If
we set free, the best fitting values are , ,
. It is shown that the holographic dark energy behaves like a
quintom-type at the level. This result is consistent with some other
independent cosmological constrains, which imply that is favored. We
also test the results derived from the differential ages using another
independent method based on the lookback time to galaxy clusters and the age of
the universe. It shows that our results are reliable.Comment: 18 pages including 7 figures and 1 tables. Final version for
publication in Modern Physics Letters A (MPLA)[minor revision to match the
appear version
- …