138 research outputs found

    Accessing spoken interaction through dialogue processing [online]

    Get PDF
    Zusammenfassung Unser Leben, unsere Leistungen und unsere Umgebung, alles wird derzeit durch Schriftsprache dokumentiert. Die rasante Fortentwicklung der technischen Möglichkeiten Audio, Bilder und Video aufzunehmen, abzuspeichern und wiederzugeben kann genutzt werden um die schriftliche Dokumentation von menschlicher Kommunikation, zum Beispiel Meetings, zu unterstĂŒtzen, zu ergĂ€nzen oder gar zu ersetzen. Diese neuen Technologien können uns in die Lage versetzen Information aufzunehmen, die anderweitig verloren gehen, die Kosten der Dokumentation zu senken und hochwertige Dokumente mit audiovisuellem Material anzureichern. Die Indizierung solcher Aufnahmen stellt die Kerntechnologie dar um dieses Potential auszuschöpfen. Diese Arbeit stellt effektive Alternativen zu schlĂŒsselwortbasierten Indizes vor, die SuchraumeinschrĂ€nkungen bewirken und teilweise mit einfachen Mitteln zu berechnen sind. Die Indizierung von Sprachdokumenten kann auf verschiedenen Ebenen erfolgen: Ein Dokument gehört stilistisch einer bestimmten Datenbasis an, welche durch sehr einfache Merkmale bei hoher Genauigkeit automatisch bestimmt werden kann. Durch diese Art von Klassifikation kann eine Reduktion des Suchraumes um einen Faktor der GrĂ¶ĂŸenordnung 4­10 erfolgen. Die Anwendung von thematischen Merkmalen zur Textklassifikation bei einer Nachrichtendatenbank resultiert in einer Reduktion um einen Faktor 18. Da Sprachdokumente sehr lang sein können mĂŒssen sie in thematische Segmente unterteilt werden. Ein neuer probabilistischer Ansatz sowie neue Merkmale (Sprecherinitia­ tive und Stil) liefern vergleichbare oder bessere Resultate als traditionelle schlĂŒsselwortbasierte AnsĂ€tze. Diese thematische Segmente können durch die vorherrschende AktivitĂ€t charakterisiert werden (erzĂ€hlen, diskutieren, planen, ...), die durch ein neuronales Netz detektiert werden kann. Die Detektionsraten sind allerdings begrenzt da auch Menschen diese AktivitĂ€ten nur ungenau bestimmen. Eine maximale Reduktion des Suchraumes um den Faktor 6 ist bei den verwendeten Daten theoretisch möglich. Eine thematische Klassifikation dieser Segmente wurde ebenfalls auf einer Datenbasis durchgefĂŒhrt, die Detektionsraten fĂŒr diesen Index sind jedoch gering. Auf der Ebene der einzelnen Äußerungen können Dialogakte wie Aussagen, Fragen, RĂŒckmeldungen (aha, ach ja, echt?, ...) usw. mit einem diskriminativ trainierten Hidden Markov Model erkannt werden. Dieses Verfahren kann um die Erkennung von kurzen Folgen wie Frage/Antwort­Spielen erweitert werden (Dialogspiele). Dialogakte und ­spiele können eingesetzt werden um Klassifikatoren fĂŒr globale Sprechstile zu bauen. Ebenso könnte ein Benutzer sich an eine bestimmte Dialogaktsequenz erinnern und versuchen, diese in einer grafischen ReprĂ€sentation wiederzufinden. In einer Studie mit sehr pessimistischen Annahmen konnten Benutzer eines aus vier Ă€hnlichen und gleichwahrscheinlichen GesprĂ€chen mit einer Genauigkeit von ~ 43% durch eine graphische ReprĂ€sentation von AktivitĂ€t bestimmt. Dialogakte könnte in diesem Szenario ebenso nĂŒtzlich sein, die Benutzerstudie konnte aufgrund der geringen Datenmenge darĂŒber keinen endgĂŒltigen Aufschluß geben. Die Studie konnte allerdings fĂŒr detailierte Basismerkmale wie FormalitĂ€t und SprecheridentitĂ€t keinen Effekt zeigen. Abstract Written language is one of our primary means for documenting our lives, achievements, and environment. Our capabilities to record, store and retrieve audio, still pictures, and video are undergoing a revolution and may support, supplement or even replace written documentation. This technology enables us to record information that would otherwise be lost, lower the cost of documentation and enhance high­quality documents with original audiovisual material. The indexing of the audio material is the key technology to realize those benefits. This work presents effective alternatives to keyword based indices which restrict the search space and may in part be calculated with very limited resources. Indexing speech documents can be done at a various levels: Stylistically a document belongs to a certain database which can be determined automatically with high accuracy using very simple features. The resulting factor in search space reduction is in the order of 4­10 while topic classification yielded a factor of 18 in a news domain. Since documents can be very long they need to be segmented into topical regions. A new probabilistic segmentation framework as well as new features (speaker initiative and style) prove to be very effective compared to traditional keyword based methods. At the topical segment level activities (storytelling, discussing, planning, ...) can be detected using a machine learning approach with limited accuracy; however even human annotators do not annotate them very reliably. A maximum search space reduction factor of 6 is theoretically possible on the databases used. A topical classification of these regions has been attempted on one database, the detection accuracy for that index, however, was very low. At the utterance level dialogue acts such as statements, questions, backchannels (aha, yeah, ...), etc. are being recognized using a novel discriminatively trained HMM procedure. The procedure can be extended to recognize short sequences such as question/answer pairs, so called dialogue games. Dialog acts and games are useful for building classifiers for speaking style. Similarily a user may remember a certain dialog act sequence and may search for it in a graphical representation. In a study with very pessimistic assumptions users are able to pick one out of four similar and equiprobable meetings correctly with an accuracy ~ 43% using graphical activity information. Dialogue acts may be useful in this situation as well but the sample size did not allow to draw final conclusions. However the user study fails to show any effect for detailed basic features such as formality or speaker identity

    Unmanned Aerial Vehicle (UAV) for monitoring soil erosion in Morocco

    Get PDF
    This article presents an environmental remote sensing application using a UAV that is specifically aimed at reducing the data gap between field scale and satellite scale in soil erosion monitoring in Morocco. A fixed-wing aircraft type Sirius I (MAVinci, Germany) equipped with a digital system camera (Panasonic) is employed. UAV surveys are conducted over different study sites with varying extents and flying heights in order to provide both very high resolution site-specific data and lower-resolution overviews, thus fully exploiting the large potential of the chosen UAV for multi-scale mapping purposes. Depending on the scale and area coverage, two different approaches for georeferencing are used, based on high-precision GCPs or the UAV’s log file with exterior orientation values respectively. The photogrammetric image processing enables the creation of Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimetre level. The created data products were used for quantifying gully and badland erosion in 2D and 3D as well as for the analysis of the surrounding areas and landscape development for larger extents

    Monitoring soil erosion in the Souss basin, Morocco, with a multiscale object-based remote sensing approach using UAV and satellite data

    Get PDF
    This article presents a multiscale approach for detecting and monitoring soil erosion phenomena (i.e. gully erosion) in the agro-industrial area around the city of Taroudannt, Souss basin, Morocco. The study area is characterized as semi-arid with an annual average precipitation of 200 mm. Water scarcity, high population dynamics and changing land use towards huge areas of irrigation farming present numerous threats to sustainability. The agro-industry produces citrus fruits and vegetables in monocropping, mainly for the European market. Badland areas strongly affected by gully erosion border the agricultural areas as well as residential areas. To counteract the significant loss of land, land-leveling measures are attempted to create space for plantations and greenhouses. In order to develop sustainable approaches to limit gully growth the detection and monitoring of gully systems is fundamental. Specific gully sites are monitored with unmanned aerial vehicle (UAV) taking small-format aerial photographs (SFAP). This enables extremely high-resolution analysis (SFAP resolution: 2-10 cm) of the actual size of the gully channels as well as a detailed continued surveillance of their growth. Transferring the methodology on a larger scale using Quickbird satellite data (resolution: 60 cm) leads to the possibility of a large-scale analysis of the whole area around the city of Taroudannt (Area extent: ca. 350 kmÂČ). The results will then reveal possible relationships of gully growth and agro-industrial management and may even illustrate further interdependencies. The main objective is the identification of areas with high gully-erosion risk due to non-sustainable land use and the development of mitigation strategies for the study area

    Class phrase models for language modeling

    Get PDF

    Tagging Of Speech Acts And Dialogue Games In Spanish Call Home

    Get PDF
    The Clarity project is devoted to automatic detection and classification of discourse structures in casual, non-task-oriented conversation using shallow, corpus-based methods of analysis. For the Clarity project, we have tagged speech acts and dialogue games in the Call Home Spanish corpus. We have done preliminary cross-level experiments on the relationship of word and speech act n-grams to dialogue games. Our results show that the label of a game cannot be predicted from n-grams of words it contains. We get better than baseline results for predicting the label of a game from the sequence of speech acts it contains, but only when the speech acts are hand tagged, and not when they are automatically detected. Our future research will focus on finding linguistic cues that are more predictive of game labels. The automatic classification of speech acts and games is carried out in a multi-level architecture that integrates classification at multiple discourse levels instead of performing them sequentially
    • 

    corecore