9,467 research outputs found

    Chaos in the Random Field Ising Model

    Get PDF
    The sensitivity of the random field Ising model to small random perturbations of the quenched disorder is studied via exact ground states obtained with a maximum-flow algorithm. In one and two space dimensions we find a mild form of chaos, meaning that the overlap of the old, unperturbed ground state and the new one is smaller than one, but extensive. In three dimensions the rearrangements are marginal (concentrated in the well defined domain walls). Implications for finite temperature variations and experiments are discussed.Comment: 4 pages RevTeX, 6 eps-figures include

    Critical Exponents of the Three Dimensional Random Field Ising Model

    Full text link
    The phase transition of the three--dimensional random field Ising model with a discrete (±h\pm h) field distribution is investigated by extensive Monte Carlo simulations. Values of the critical exponents for the correlation length, specific heat, susceptibility, disconnected susceptibility and magnetization are determined simultaneously via finite size scaling. While the exponents for the magnetization and disconnected susceptibility are consistent with a first order transition, the specific heat appears to saturate indicating no latent heat. Sample to sample fluctuations of the susceptibilty are consistent with the droplet picture for the transition.Comment: Revtex, 10 pages + 4 figures included as Latex files and 1 in Postscrip

    Phase Diagram and Storage Capacity of Sequence Processing Neural Networks

    Full text link
    We solve the dynamics of Hopfield-type neural networks which store sequences of patterns, close to saturation. The asymmetry of the interaction matrix in such models leads to violation of detailed balance, ruling out an equilibrium statistical mechanical analysis. Using generating functional methods we derive exact closed equations for dynamical order parameters, viz. the sequence overlap and correlation- and response functions, in the thermodynamic limit. We calculate the time translation invariant solutions of these equations, describing stationary limit-cycles, which leads to a phase diagram. The effective retarded self-interaction usually appearing in symmetric models is here found to vanish, which causes a significantly enlarged storage capacity of αc0.269\alpha_c\sim 0.269, compared to \alpha_\c\sim 0.139 for Hopfield networks storing static patterns. Our results are tested against extensive computer simulations and excellent agreement is found.Comment: 17 pages Latex2e, 2 postscript figure

    Fluctuation Dissipation Ratio in Three-Dimensional Spin Glasses

    Full text link
    We present an analysis of the data on aging in the three-dimensional Edwards Anderson spin glass model with nearest neighbor interactions, which is well suited for the comparison with a recently developed dynamical mean field theory. We measure the parameter x(q)x(q) describing the violation of the relation among correlation and response function implied by the fluctuation dissipation theorem.Comment: LaTeX 10 pages + 4 figures (appended as uuencoded compressed tar-file), THP81-9

    Flow correlated percolation during vascular network formation in tumors

    Full text link
    A theoretical model based on the molecular interactions between a growing tumor and a dynamically evolving blood vessel network describes the transformation of the regular vasculature in normal tissues into a highly inhomogeneous tumor specific capillary network. The emerging morphology, characterized by the compartmentalization of the tumor into several regions differing in vessel density, diameter and necrosis, is in accordance with experimental data for human melanoma. Vessel collapse due to a combination of severely reduced blood flow and solid stress exerted by the tumor, leads to a correlated percolation process that is driven towards criticality by the mechanism of hydrodynamic vessel stabilization.Comment: 4 pages, 3 figures (higher resolution at http://www.uni-saarland.de/fak7/rieger/HOMEPAGE/flow.eps

    Ground state properties of solid-on-solid models with disordered substrates

    Full text link
    We study the glassy super-rough phase of a class of solid-on-solid models with a disordered substrate in the limit of vanishing temperature by means of exact ground states, which we determine with a newly developed minimum cost flow algorithm. Results for the height-height correlation function are compared with analytical and numerical predictions. The domain wall energy of a boundary induced step grows logarithmically with system size, indicating the marginal stability of the ground state, and the fractal dimension of the step is estimated. The sensibility of the ground state with respect to infinitesimal variations of the quenched disorder is analyzed.Comment: 4 pages RevTeX, 3 eps-figures include

    Application of a minimum cost flow algorithm to the three-dimensional gauge glass model with screening

    Full text link
    We study the three-dimensional gauge glass model in the limit of strong screening by using a minimum cost flow algorithm, enabling us to obtain EXACT ground states for systems of linear size L<=48. By calculating the domain-wall energy, we obtain the stiffness exponent theta = -0.95+/-0.03, indicating the absence of a finite temperature phase transition, and the thermal exponent nu=1.05+/-0.03. We discuss the sensitivity of the ground state with respect to small perturbations of the disorder and determine the overlap length, which is characterized by the chaos exponent zeta=3.9+/-0.2, implying strong chaos.Comment: 4 pages RevTeX, 2 eps-figures include

    Dislocations in the ground state of the solid-on-solid model on a disordered substrate

    Full text link
    We investigate the effects of topological defects (dislocations) to the ground state of the solid-on-solid (SOS) model on a simple cubic disordered substrate utilizing the min-cost-flow algorithm from combinatorial optimization. The dislocations are found to destabilize and destroy the elastic phase, particularly when the defects are placed only in partially optimized positions. For multi defect pairs their density decreases exponentially with the vortex core energy. Their mean distance has a maximum depending on the vortex core energy and system size, which gives a fractal dimension of 1.27±0.021.27 \pm 0.02. The maximal mean distances correspond to special vortex core energies for which the scaling behavior of the density of dislocations change from a pure exponential decay to a stretched one. Furthermore, an extra introduced vortex pair is screened due to the disorder-induced defects and its energy is linear in the vortex core energy.Comment: 6 pages RevTeX, eps figures include

    Extended surface disorder in the quantum Ising chain

    Full text link
    We consider random extended surface perturbations in the transverse field Ising model decaying as a power of the distance from the surface towards a pure bulk system. The decay may be linked either to the evolution of the couplings or to their probabilities. Using scaling arguments, we develop a relevance-irrelevance criterion for such perturbations. We study the probability distribution of the surface magnetization, its average and typical critical behaviour for marginal and relevant perturbations. According to analytical results, the surface magnetization follows a log-normal distribution and both the average and typical critical behaviours are characterized by power-law singularities with continuously varying exponents in the marginal case and essential singularities in the relevant case. For enhanced average local couplings, the transition becomes first order with a nonvanishing critical surface magnetization. This occurs above a positive threshold value of the perturbation amplitude in the marginal case.Comment: 15 pages, 10 figures, Plain TeX. J. Phys. A (accepted
    corecore