38 research outputs found
The Dynamics of microRNA Transcriptome in Bovine Corpus Luteum during Its Formation, Function, and Regression
The formation, function, and subsequent regression of the ovarian corpus luteum (CL) are dynamic processes that enable ovary cyclical activity. Studies in whole ovary tissue have found microRNAs (miRNAs) to by critical for ovary function. However, relatively little is known about the role of miRNAs in the bovine CL. Utilizing small RNA next-generation sequencing we profiled miRNA transcriptome in bovine CL during the entire physiological estrous cycle, by sampling the CL on days: d 1-2, d 3-4, and d 5-7 (early CL, eCL), d 8-12 (mid CL, mCL), d 13-16 (late CL, lCL), and d > 18 (regressed CL, rCL). We characterized patterns of miRNAs abundance and identified 42 miRNAs that were consistent significantly different expressed (DE) in the eCL relative to their expression at each of the analyzed stages (mCL, lCL, and rCL). Out of these, bta-miR-210-3p, -2898, -96, -7-5p, -183-5p, -182, and -202 showed drastic up-regulation with a fold-change of >= 2.0 and adjusted P < 0.01 in the eCL, while bta-miR-146a was downregulated at lCL and rCL vs. the eCL. Another 24, 11, and 21 miRNAs were significantly DE only between individual comparisons, eCL vs. the mCL, lCL, and rCL, respectively. Irrespective of cycle stage two miRNAs, bta-miR-21-5p and bta-miR-143 were identified as the most abundant miRNAs species and show opposing expression abundance. Whilst bta-miR-21-5p peaked in number of reads in the eCL and was significantly downregulated in the mCL and lCL, bta-miR-143 reached its peak in the rCL and is significantly downregulated in the eCL. MiRNAs with significant DE in at least one cycle stage (CL class) were further grouped into eight distinct clusters by the self-organizing tree algorithm (SOTA). Half of the clusters contain miRNAs with low-expression, whilst the other half contain miRNAs with high-expression levels during eCL. Prediction analysis for significantly DE miRNAs resulted in target genes involved with CL formation, functionalization and CL regression. This study is the most comprehensive profiling of miRNA transcriptome in bovine CL covering the entire estrous cycle and provides a compact database for further functional validation and biomarker identification relevant for CL viability and fertility
Detectability of testosterone esters and estradiol benzoate in bovine hair and plasma following pour-on treatment
The abuse of synthetic esters of natural steroids such as testosterone and estradiol in cattle fattening and sports is hard to detect via routine urine testing. The esters are rapidly hydrolysed in vivo into substances which are also endogenously present in urine. An interesting alternative can be provided by the analysis of the administered synthetic steroids themselves, i.e., the analysis of intact steroid esters in hair by liquid chromatography tandem mass spectrometry (LC/MS/MS). However, retrospective estimation of the application date following a non-compliant finding is hindered by the complexity of the kinetics of the incorporation of steroid esters in hair. In this study, the incorporation of intact steroid esters in hair following pour-on treatment has been studied and critically compared with results from intramuscular treatment. To this end animals were pour-on treated with a hormone cocktail containing testosterone cypionate, testosterone decanoate and estradiol benzoate in different carriers. The animals were either treated using injection and pour-on application once or three times having 1 week between treatments using injection and pour-on application. Animals were slaughtered from 10–12 weeks after the last treatment. Both hair and blood plasma samples were collected and analysed by LC/MS/MS. From the results, it is concluded that after single treatment the levels of steroid esters in hair drop to CCβ levels (5–20 µg/kg) after 5–7 weeks. When treatment is repeated two times, the CCβ levels are reached after 9–11 weeks. Furthermore, in plasma, no steroid esters were detected; not even at the low microgramme per litre level but—in contrast with the pour-on application—after i.m. injection, significant increase of 17β-testosterone and 17β-estradiol were observed. These observations suggest that transport of steroid esters after pour-on application is not only performed by blood but also by alternative fluids in the animal so probably the steroid esters are already hydrolysed and epimerized before entering the blood
Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein
Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively ‘regulating’ connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and other tissues, and this connexin’s role in therapeutic and adverse effects of statins in a range of disease states
Article DOI: 10.2478/v10133-010-0074-7 Be COMPARISON OF TWO AVAILABLE PLATFORMS FOR DETERMINATION OF RNA QUALITY
The integrity of RNA is a very critical aspect regarding downstream RNA based quantitative analysis like RT-qPCR. Lowquality RNA can compromise the results of such experiments. Today automated lab-on-chip capillary electrophoresis allows rapid RNA quality and quantity determination, e.g. 2100 Bioanalyzer (Agilent Technologies) and the Experion (Bio-Rad). Both platforms determine RNA quality using a numerical system which represents the integrity of RNA. The Bioanalyzer offers the RIN algorithm (RNA Integrity Number) on the Bioanalyzer 2100 and Bio-Rad developed a new Experion software version that offers an algorithm for calculating the RNA Quality Index (RQI). The aim of this study was to compare both systems regarding sensitivity, reproducibility, linearity and the influence of individual tissue extractions and different chip runs on RNA quality and quantity determination. Overall it was confirmed that both algorithms are very comparable and beneficial for the determination of RNA quality for downstream applications. The Experion showed slightly better results regarding reproducibility and absolute sensitivity, whereas the 2100 Bioanalyzer showed a higher linearity
DOI 10.1007/s10529-009-0130-2
Validation of extraction methods for total RNA and miRNA from bovine blood prior to quantitative gene expression analyse
Contents lists available at ScienceDirect Methods
journal homepage: www.elsevier.com/locate/ymet
The Dynamics of microRNA Transcriptome in Bovine Corpus Luteum during Its Formation, Function, and Regression
The formation, function, and subsequent regression of the ovarian corpus luteum (CL) are dynamic processes that enable ovary cyclical activity. Studies in whole ovary tissue have found microRNAs (miRNAs) to by critical for ovary function. However, relatively little is known about the role of miRNAs in the bovine CL. Utilizing small RNA next-generation sequencing we profiled miRNA transcriptome in bovine CL during the entire physiological estrous cycle, by sampling the CL on days: d 1–2, d 3–4, and d 5–7 (early CL, eCL), d 8–12 (mid CL, mCL), d 13–16 (late CL, lCL), and d > 18 (regressed CL, rCL). We characterized patterns of miRNAs abundance and identified 42 miRNAs that were consistent significantly different expressed (DE) in the eCL relative to their expression at each of the analyzed stages (mCL, lCL, and rCL). Out of these, bta-miR-210-3p, −2898, −96, −7-5p, −183-5p, −182, and −202 showed drastic up-regulation with a fold-change of ≥2.0 and adjusted P < 0.01 in the eCL, while bta-miR-146a was downregulated at lCL and rCL vs. the eCL. Another 24, 11, and 21 miRNAs were significantly DE only between individual comparisons, eCL vs. the mCL, lCL, and rCL, respectively. Irrespective of cycle stage two miRNAs, bta-miR-21-5p and bta-miR-143 were identified as the most abundant miRNAs species and show opposing expression abundance. Whilst bta-miR-21-5p peaked in number of reads in the eCL and was significantly downregulated in the mCL and lCL, bta-miR-143 reached its peak in the rCL and is significantly downregulated in the eCL. MiRNAs with significant DE in at least one cycle stage (CL class) were further grouped into eight distinct clusters by the self-organizing tree algorithm (SOTA). Half of the clusters contain miRNAs with low-expression, whilst the other half contain miRNAs with high-expression levels during eCL. Prediction analysis for significantly DE miRNAs resulted in target genes involved with CL formation, functionalization and CL regression. This study is the most comprehensive profiling of miRNA transcriptome in bovine CL covering the entire estrous cycle and provides a compact database for further functional validation and biomarker identification relevant for CL viability and fertility