51 research outputs found

    Multiple band structures in Ta169

    Get PDF
    Rotational structures in the Ta169 nucleus were studied via the Sn124(V51, 6n) reaction. These data were obtained as a side channel of an experiment focusing on Ta171, but the sensitivity provided by the Gammasphere spectrometer proved sufficient for a significant extension of the level scheme of this rare-earth nucleus. Over 170 new transitions and four new band structures were placed in Ta169, including the intruder πi13/2 structure. Linking transitions between all of the sequences were identified, and the relative excitation energies between the different configurations were determined for the first time. The rotational sequences were interpreted within the framework of the cranked shell model

    First observation of rotational structures in Re 168

    Get PDF
    The first rotational sequences have been assigned to the odd-odd nucleus Re168. Coincidence relationships of these structures with rhenium x rays confirm the isotopic assignment, while arguments based on the γ-ray multiplicity (K-fold) distributions observed with the new bands lead to the mass assignment. Configurations for the two bands were determined through analysis of the rotational alignments of the structures and a comparison of the experimental B(M1)/B(E2) ratios with theory. Tentative spin assignments are proposed for the πh11/2νi13/2 band, based on energy level systematics for other known sequences in neighboring odd-odd rhenium nuclei, as well as on systematics seen for the signature inversion feature that is well known in this region. The spin assignment for the πh11/2ν(h9/2/f7/2) structure provides additional validation of the proposed spins and configurations for isomers in the Au176 → Ir172→Re168 α-decay chain

    Alignments, additivity, and signature inversion in odd-odd Ta170: A comprehensive high-spin study

    Get PDF
    High-spin states (I 50) of the odd-odd nucleus Ta170 have been investigated with the Sn124(51V,5n) reaction. The resolving power of Gammasphere has allowed for the observation of eleven rotational bands (eight of which are new) and over 430 transitions (~350 of which are new) in this nucleus. Many interband transitions have been observed such that the relative spins and excitation energies of the 11 bands have been established. This is an unusual circumstance in an odd-odd study. Configurations have been assigned to most of these bands based upon features such as alignment properties, band crossings, B(M1)/B(E2) ratios, and the additivity of Routhians. A systematic study of the frequency at which normal signature ordering occurs in the πh9/2νi13/2 band has been performed and it is found that its trend is opposite to that observed in the πh11/2νi13/2 bands. A possible interpretation of these trends is discussed based on a proton-neutron interaction

    Multiple band structures in 169,170Re: Search for the wobbling mode in 169Re, and residual-interaction analysis of structures in 170Re

    Get PDF
    Although the observation of wobbling was once thought to be possibly confined to lutetium isotopes in N≈94 nuclei, the identification of this exotic collective mode in 167Ta has raised the question of the role of the proton Fermi surface with regard to this phenomenon. To investigate this issue, an experiment was performed to populate high-spin states in the N=94 nucleus 169Re. The heavy-ion reaction 55Mn+118Sn was used in conjunction with Gammasphere to detect the emitted γ rays. More than 130 new transitions were added to the 169Re level scheme, including the first identification of the πi13/2 rotational sequence in this nucleus. This configuration is the structure on which all known wobbling sequences are based, but no wobbling band was observed, likely owing to the fact that the πi13/2 sequence is located at a relatively high energy in comparison with the other structures found in 169Re. Nine decay sequences are now established in this nucleus and are described within the context of the cranked shell model. In addition, significant extension of the level scheme of the odd-odd 170Re nucleus was possible and a discussion of the residual interactions for the πh 9/2νi13/2 and πi13/2νi13/2 configurations in this region is given as well

    Band crossings in Ta166

    Get PDF
    High-spin states in the odd-odd nucleus Ta166 are investigated through the 5n channel of the V51+Sn120 reaction. Four new bands are observed and linked into the previous level scheme. Configurations for the bands are proposed, based on measured alignments and B(M1)/B(E2) transition strength ratios

    High-spin structure of odd-odd Re 172

    Get PDF
    A significant extension of the level scheme for the odd-odd nucleus Re172 was accomplished through the use of the Gammasphere spectrometer. States up to a tentative spin assignment of 39 were observed and two new structures were identified. Configuration assignments are proposed based on alignment properties and observed band crossings

    Quadrupole moments of collective structures up to spin ̃65h in 157Er and 158Er: A challenge for understanding triaxiality in nuclei

    Get PDF
    The transition quadrupole moments, Qt, of four weakly populated collective bands up to spin ̃65h in 157,158Er have been measured to be ̃11 eb demonstrating that these sequences are associated with large deformations. However, the data are inconsistent with calculated values from cranked Nilsson-Strutinsky calculations that predict the lowest energy triaxial shape to be associated with rotation about the short principal axis. The data appear to favor either a stable triaxial shape rotating about the intermediate axis or, alternatively, a triaxial shape with larger deformation rotating about the short axis. These new results challenge the present understanding of triaxiality in nuclei

    Possible deformation evolution in the πi13/2 structure of 171Re

    Get PDF
    The phenomenon of wobbling can only occur for a nuclear shape with stable triaxial deformation. To date, only a few examples of this exotic collective mode have been observed in lutetium and tantalum isotopes. A search for a wobbling sequence was performed in 171Re to determine if this feature can be observed in Z>73 nuclei. No evidence was found for wobbling; however, an interaction between the πi13/2 sequence and another positive-parity band may give an indication on why wobbling may not occur in this nucleus. The level scheme for 171Re was significantly extended and interpretations for the decay sequences are proposed within the context of the cranked shell model

    Observation of a decoupled band in 123 Cs

    Full text link
    The methods of in-beam γ -ray spectroscopy have been used to study 123 Cs produced by the 115 In( 12 C, 4 n ) reaction. Five coincident stretched E 2 transitions, previously assigned in the literature to 123 Ba, have been identified as members of a decoupled band in 123 Cs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45822/1/10050_2005_Article_BF01422105.pd

    Non-yrast positive-parity structures in the γ-soft nucleus Er156

    Get PDF
    Weakly populated band structures have been established in Er156 at low to medium spins, following the Cd114(Ca48,6nγ) reaction at 215 MeV. High-fold γ-ray coincidence data were recorded in a high-statistics experiment with the Gammasphere spectrometer. Bands built on the second 0+ and 2+ (γ-vibrational) states have been established. A large energy staggering between the even- and odd-spin members of the γ-vibrational band suggests a γ-soft nature of this nucleus. An additional band is discussed as being based on a rotationally aligned (νh9/2,f 7/2)2 structure, coexisting with the systematically observed, more favorable (νi13/2)2 aligned structure seen in this mass region
    • …
    corecore