1,561 research outputs found

    Demographic characteristics of patients with extrapulmonary tuberculosis in Germany

    Get PDF
    The aim of the present study was to determine the demographics of patients with extrapulmonary tuberculosis in Germany. Data on 26,302 tuberculosis cases from a national survey carried out during the period 1996-2000 were analysed. The crude proportion of tuberculosis patients with extrapulmonary manifestations was 21.6%. Extrapulmonary tuberculosis was most likely among females, children aged <15 yrs and persons originating from Africa and Asia. Females tended to be more likely to have any form of extrapulmonary tuberculosis than males, except pleural tuberculosis. The strength of this association was strongest in the age range 25-64 yrs and less pronounced amongst the oldest patients. Children were particularly prone to the development of lymphatic and meningeal tuberculosis, whereas the likelihood of genitourinary tuberculosis increased with increasing age. Asian and African patients were generally more likely than persons from other areas to have lymphatic, osteoarticular, meningeal and miliary tuberculosis. The analysis shows important differences, by age, sex and origin, in the likelihood of a tuberculosis patient presenting with extrapulmonary tuberculosis. Since the relative contribution of the foreign-born to tuberculosis in low-prevalence countries is rising, extrapulmonary tuberculosis must be taken into account more often in the differential diagnostic work-up of these patients, particularly among those originating from Asia and Africa

    Heat conduction in the diatomic Toda lattice revisited

    Full text link
    The problem of the diverging thermal conductivity in one-dimensional (1-D) lattices is considered. By numerical simulations, it is confirmed that the thermal conductivity of the diatomic Toda lattice diverges, which is opposite to what one has believed before. Also the diverging exponent is found to be almost the same as the FPU chain. It is reconfirmed that the diverging thermal conductivity is universal in 1-D systems where the total momentum preserves.Comment: 3 pages, 3 figures. To appear in Phys. Rev.

    Infinitesimally Robust Estimation in General Smoothly Parametrized Models

    Full text link
    We describe the shrinking neighborhood approach of Robust Statistics, which applies to general smoothly parametrized models, especially, exponential families. Equal generality is achieved by object oriented implementation of the optimally robust estimators. We evaluate the estimates on real datasets from literature by means of our R packages ROptEst and RobLox

    Estimation of Mortalities

    Get PDF
    If a linear regression is fit to log-transformed mortalities and the estimate is back-transformed according to the formula Ee^Y = e^{\mu + \sigma^2/2} a systematic bias occurs unless the error distribution is normal and the scale estimate is gauged to normal variance. This result is a consequence of the uniqueness theorem for the Laplace transform. We determine the systematic bias of minimum-L_2 and minimum-L_1 estimation with sample variance and interquartile range of the residuals as scale estimates under a uniform and four contaminated normal error distributions. Already under innocent looking contaminations the true mortalities may be underestimated by 50% in the long run. Moreover, the logarithmic transformation introduces an instability into the model that results in a large discrepancy between rg_Huber estimates as the tuning constant regulating the degree of robustness varies. Contrary to the logarithm the square root stabilizes variance, diminishes the influence of outliers, automatically copes with observed zeros, allows the `nonparametric' back-transformation formula E Y^2 = \mue^2 + \sigma^2, and in the homoskedastic case avoids a systematic bias of minimum-L_2 estimation with sample variance. For the company-specific table 3 of [Loeb94], in the age range of 20-65 years, we fit a parabola to root mortalities by minimum-L_2 , minimum-L_1, and robust rg_Huber regression estimates, and a cubic and exponential by least squares. The fits thus obtained in the original model are excellent and practically indistinguishable by a \chi^2 goodness-of-fit test. Finally , dispensing with the transformation of observations, we employ a Poisson generalized linear model and fit an exponential and a cubic by maximum likelihood

    Performance of LED-Based Fluorescence Microscopy to Diagnose Tuberculosis in a Peripheral Health Centre in Nairobi.

    Get PDF
    Sputum microscopy is the only tuberculosis (TB) diagnostic available at peripheral levels of care in resource limited countries. Its sensitivity is low, particularly in high HIV prevalence settings. Fluorescence microscopy (FM) can improve performance of microscopy and with the new light emitting diode (LED) technologies could be appropriate for peripheral settings. The study aimed to compare the performance of LED-FM versus Ziehl-Neelsen (ZN) microscopy and to assess feasibility of LED-FM at a low level of care in a high HIV prevalence country

    Heat conduction in one dimensional nonintegrable systems

    Full text link
    Two classes of 1D nonintegrable systems represented by the Fermi-Pasta-Ulam (FPU) model and the discrete ϕ4\phi^4 model are studied to seek a generic mechanism of energy transport in microscopic level sustaining macroscopic behaviors. The results enable us to understand why the class represented by the ϕ4\phi^4 model has a normal thermal conductivity and the class represented by the FPU model does not even though the temperature gradient can be established.Comment: 4 Revtex Pages, 4 Eps figures included, to appear in Phys. Rev. E, March 200

    Simulational Study on Dimensionality-Dependence of Heat Conduction

    Full text link
    Heat conduction phenomena are studied theoretically using computer simulation. The systems are crystal with nonlinear interaction, and fluid of hard-core particles. Quasi-one-dimensional system of the size of Lx×Ly×Lz(LzLx,Ly)L_x\times L_y\times L_z(L_z\gg L_x,L_y) is simulated. Heat baths are put in both end: one has higher temperature than the other. In the crystal case, the interaction potential VV has fourth-order non-linear term in addition to the harmonic term, and Nose-Hoover method is used for the heat baths. In the fluid case, stochastic boundary condition is charged, which works as the heat baths. Fourier-type heat conduction is reproduced both in crystal and fluid models in three-dimensional system, but it is not observed in lower dimensional system. Autocorrelation function of heat flux is also observed and long-time tails of the form of td/2\sim t^{-d/2}, where dd denotes the dimensionality of the system, are confirmed.Comment: 4 pages including 3 figure

    Thermal conductivity of the Toda lattice with conservative noise

    Full text link
    We study the thermal conductivity of the one dimensional Toda lattice perturbed by a stochastic dynamics preserving energy and momentum. The strength of the stochastic noise is controlled by a parameter γ\gamma. We show that heat transport is anomalous, and that the thermal conductivity diverges with the length nn of the chain according to κ(n)nα\kappa(n) \sim n^\alpha, with 0<α1/20 < \alpha \leq 1/2. In particular, the ballistic heat conduction of the unperturbed Toda chain is destroyed. Besides, the exponent α\alpha of the divergence depends on γ\gamma
    corecore