12 research outputs found
Density of states at disorder-induced phase transitions in a multichannel Majorana wire
An -channel spinless p-wave superconducting wire is known to go through a
series of topological phase transitions upon increasing the disorder
strength. Here, we show that at each of those transitions the density of states
shows a Dyson singularity , whereas has a power-law singularity for small energies
away from the critical points. Using the concept of
"superuniversality" [Gruzberg, Read, and Vishveshwara, Phys. Rev. B 71, 245124
(2005)], we are able to relate the exponent to the wire's transport
properties at zero energy and, hence, to the mean free path and the
superconducting coherence length .Comment: 4+1 pages, 3 figure
Reentrant topological phase transitions in a disordered spinless superconducting wire
In a one-dimensional spinless p-wave superconductor with coherence length \xi, disorder induces a phase transition between a topologically nontrivial phase and a trivial insulating phase at the critical mean free path l=\xi/2. Here, we show that a multichannel spinless p-wave superconductor goes through an alternation of topologically trivial and nontrivial phases upon increasing the disorder strength, the number of phase transitions being equal to the channel number N. The last phase transition, from a nontrivial phase into the trivial phase, takes place at a mean free path l = \xi/(N+1), parametrically smaller than the critical mean free path in one dimension. Our result is valid in the limit that the wire width W is much smaller than the superconducting coherence length \xi
Statistical periodicity in driven quantum systems: General formalism and application to noisy Floquet topological chains
Much recent experimental effort has focused on the realization of exotic
quantum states and dynamics predicted to occur in periodically driven systems.
But how robust are the sought-after features, such as Floquet topological
surface states, against unavoidable imperfections in the periodic driving? In
this work, we address this question in a broader context and study the dynamics
of quantum systems subject to noise with periodically recurring statistics. We
show that the stroboscopic time evolution of such systems is described by a
noise-averaged Floquet superoperator. The eigenvectors and -values of this
superoperator generalize the familiar concepts of Floquet states and
quasienergies and allow us to describe decoherence due to noise efficiently.
Applying the general formalism to the example of a noisy Floquet topological
chain, we re-derive and corroborate our recent findings on the noise-induced
decay of topologically protected end states. These results follow directly from
an expansion of the end state in eigenvectors of the Floquet superoperator.Comment: 13 pages, 5 figures. This is the final, published versio
Charge of a quasiparticle in a superconductor
Non-linear charge transport in SIS Josephson junctions has a unique signature
in the shuttled charge quantum between the two superconductors. In the
zero-bias limit Cooper pairs, each with twice the electron charge, carry the
Josephson current. An applied bias leads to multiple Andreev
reflections (MAR), which in the limit of weak tunneling probability should lead
to integer multiples of the electron charge traversing the junction, with
integer larger than and the superconducting
order parameter. Exceptionally, just above the gap, , with
Andreev reflections suppressed, one would expect the current to be carried by
partitioned quasiparticles; each with energy dependent charge, being a
superposition of an electron and a hole. Employing shot noise measurements in
an SIS junction induced in an InAs nanowire (with noise proportional to the
partitioned charge), we first observed quantization of the partitioned charge
, with ; thus reaffirming the validity of our charge
interpretation. Concentrating next on the bias region
, we found a reproducible and clear dip in the
extracted charge to , which, after excluding other
possibilities, we attribute to the partitioned quasiparticle charge. Such dip
is supported by numerical simulations of our SIS structure
The CHEOPS mission
The CHaracterising ExOPlanet Satellite (CHEOPS) was selected in 2012, as the
first small mission in the ESA Science Programme and successfully launched in
December 2019. CHEOPS is a partnership between ESA and Switzerland with
important contributions by ten additional ESA Member States. CHEOPS is the
first mission dedicated to search for transits of exoplanets using ultrahigh
precision photometry on bright stars already known to host planets. As a
follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible,
existing radii measurements or provide first accurate measurements for a subset
of those planets for which the mass has already been estimated from
ground-based spectroscopic surveys and to following phase curves. CHEOPS will
provide prime targets for future spectroscopic atmospheric characterisation.
Requirements on the photometric precision and stability have been derived for
stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS
shall be able to detect Earth-size planets transiting G5 dwarf stars in the
magnitude range between 6 and 9 by achieving a photometric precision of 20 ppm
in 6 hours of integration. For K stars in the magnitude range between 9 and 12,
CHEOPS shall be able to detect transiting Neptune-size planets achieving a
photometric precision of 85 ppm in 3 hours of integration. This is achieved by
using a single, frame-transfer, back-illuminated CCD detector at the focal
plane assembly of a 33.5 cm diameter telescope. The 280 kg spacecraft has a
pointing accuracy of about 1 arcsec rms and orbits on a sun-synchronous
dusk-dawn orbit at 700 km altitude.
The nominal mission lifetime is 3.5 years. During this period, 20% of the
observing time is available to the community through a yearly call and a
discretionary time programme managed by ESA.Comment: Submitted to Experimental Astronom
Ăber topologische Phasen in ungeordneten p-Wellen SupraleiterdrĂ€hten
Topological phases of matter have been the subject of intense experimental and
theoretical research during the last years. Prominent examples are the Quantum
Hall Effect, Topological Insulators or Topological Superconductors. The latter
host special excitations, the Majorana states, at their boundaries, which can
be thought of as the halves of an electron that can exist separately in this
special case. These Majorana states have attracted great interest as they
exhibit so-called non-Abelian braiding statistics, which could make them
useful tools in the search for fault-tolerant quantum computation. In this
context topologically superconducting wires are particularly useful as the
Majorana states are located unambiguously at the wireâs end, where they form
localized end states. Topologically superconducting wires are not known to
exist in nature but they can be engineered from commonly available
ingredients: semiconductor or ferromagnet nano- wires and conventional
superconductors. The nano-wires can inherit superconductivity by the proximity
effect and can then exhibit a topologically nontrivial phase. By now, several
experiments have been performed on such hybrid structures, reporting
measurements that are consistent with the existence of a topologically
superconducting phase in the nanowire. Most theoretical investigations on
these systems, so far, have been restricted to a one-dimensional effective
model: The one-dimensional p-wave superconductor, which is the prototype of a
topologically superconducting wire. A nanowire, however, is in general in a
quasi-one dimensional regime, with a continuous longitudinal but a quantized
transverse degree of freedom. In this Thesis we study the multichannel
generalization of a topologically superconducting wire by means of a two-
dimensional p + ip-superconductor that is restricted to a narrow-strip
geometry. Such systems can be in a topological phase, characterized by the
existence of a zero-energy excitation at the wires endâthe Majorana bound
state. We study the effect of various geometrical terminations on the low-
energy spectrum of such a wire and find that subgap states tend to accumulate
around zero energy. In a density-of- states measurement, these states
potentially obscure the Majorana state thereby hindering the detection of the
topological phase. We further investigate the effect of disorder on a
multichannel wire and find that it induces a series of phase transitions with
a reentrant topological phase. Due to disorder-localized states accumulating
in the superconducting gap, the low-energy spectrum for a disordered wire
contains a signature of the topological phase transitions as well: a
singularity in the density of states, which is the well-known Dyson-
singularity.Topologische Phasen der kondensierten Materie sind Gegenstand intensiver
theoretischer und experimenteller Forschung. Die wohl bekanntesten Beispiele
fĂŒr solche Phasen sind: der Quanten-Hall Effekt, Topologische Isolatoren und
Topologische Supraleiter. Letztere weisen sich durch spezielle Anregungen, die
MajoranazustÀnde, aus, welche man sich als die HÀlften eines Elektrons
vorstellen kann und die der OberflÀche eines solchen topologischen
Supraleiters getrennt voneinander existieren können. Die MajoranazustÀnde
haben aufgrund ihren besonderen Eigenschaften ein groĂes wissenschaftliches
Interesse geweckt. Sie besitzen eine nicht-Abelsche Flechtstatistik, welche
sie zu nĂŒtzlichen Bauteilen fĂŒr einen möglichen fehlertoleranten
Quantencomputer macht. In diesem Zusammenhang sind vor allem topologisch
supraleitende DrÀhte wichtig, da in diesen die Positionen der MajoranazustÀnde
als die Drahtenden, den OberflÀchen eines eindimensionalen Systems, eindeutig
bestimmt sind. Topologisch supraleitende DrÀhten treten zwar nicht in der
Natur auf können aber von verfĂŒgbaren Materialien, Halbleiter- oder
ferromagnetische NanodrÀhten und konventionellen Supraleitern, konstruiert
werden. Die NanodrÀhte können aufgrund des Proximity-Effekts supraleitende
Eigenschaften ĂŒbernehmen und eine topologisch nichttriviale Phase aufweisen.
Inzwischen wurden mehrere Experimente an solchen Hybrid- strukturen
durchgefĂŒhrt und von Messergebnissen berichtet, welche mit den theoretischen
Vorhersagen konsistent sind. Die meisten theoretischen Arbeiten an solchen
DrÀhten sind auf ein eindimensionales effektives Model beschrÀnkt, den
p-Wellen Supraleiter. Ein Nanodraht ist aber normalerweise ein quasi-
eindimensionales System, mit einem kontinuierlichen, longitudinalen und einem
quantisierten, transversalen Freiheitsgrad. In dieser Doktorarbeit
untersuchten wir die Verallgemeinerung eines topologisch supraleitenden
Drahtes zu einem Mehrkanalsystem, indem wir einen zweidimensionalen p + ip-
Supraleiter auf die Geometrie eines schmalen Streifens beschrÀnkten. Solche
Systeme können eine topologisch nichttriviale Phase aufweisen, welche durch
die Existenz einer Nullenergieanregung, ein Majoranazustand, gekennzeichnet
ist. Wir haben den Effekt verschiedener geometrischer Drahtendungen auf das
Niedrigenergiespektrum eines solchen Drahtes untersucht und beobachtet, dass
sich innerhalb der EnergielĂŒcke des Supraleit- ers ZustĂ€nde ansammeln, welche
sich um die Nullenergie scharen. In der Zustandsdichte könnten diese den
Majoranazustand verdecken und daher die Identifizierung der topologischen
Phase wesentlich erschweren. Des weiteren haben wir die topologische Phase
eines Mehrkanalsystems unter dem Einfluss eines Unordnungspotentials erforscht
und eine Serie topologischer PhasenĂŒbergĂ€nge bei ansteigender UnordnungsstĂ€rke
gefunden. Im Niedrigenergiespektrum des Drahtes werden die PhasenĂŒbergĂ€nge von
der charakteristischen Dyson-SingularitÀt begleitet