159 research outputs found
Coexisting Pulses in a Model for Binary-Mixture Convection
We address the striking coexistence of localized waves (`pulses') of
different lengths which was observed in recent experiments and full numerical
simulations of binary-mixture convection. Using a set of extended
Ginzburg-Landau equations, we show that this multiplicity finds a natural
explanation in terms of the competition of two distinct, physical localization
mechanisms; one arises from dispersion and the other from a concentration mode.
This competition is absent in the standard Ginzburg-Landau equation. It may
also be relevant in other waves coupled to a large-scale field.Comment: 5 pages revtex with 4 postscript figures (everything uuencoded
Phase Diffusion in Localized Spatio-Temporal Amplitude Chaos
We present numerical simulations of coupled Ginzburg-Landau equations
describing parametrically excited waves which reveal persistent dynamics due to
the occurrence of phase slips in sequential pairs, with the second phase slip
quickly following and negating the first. Of particular interest are solutions
where these double phase slips occur irregularly in space and time within a
spatially localized region. An effective phase diffusion equation utilizing the
long term phase conservation of the solution explains the localization of this
new form of amplitude chaos.Comment: 4 pages incl. 5 figures uucompresse
Detecting Spatial Orientation Demands during Virtual Navigation using EEG Brain Sensing
This study shows how brain sensing can offer insight to the evaluation of human spatial orientation in virtual reality (VR) and establish a role for electroencephalogram (EEG) in virtual navigation. Research suggests that the evaluation of spatial orientation in VR benefits by goingbeyond performance measures or questionnaires to measurements of the user’s cognitive state. While EEG has emerged as a practical brain sensing technology in cognitive research, spatial orientation tasks often rely on multiple factors (e.g., reference frame used, ability to update simulated rotation, and/or left-right confusion) which may be inaccessible to this measurement. EEG has been shown to correlate with human spatial orientation in previous research. In this paper, we use convolutional neural network (CNN), an advanced technique in machine learning, to train a detection model that can identify moments in which VR users experienced some increase in spatial orientation demands in real-time. Our results demonstrate that we can indeed use machine learning technique to detect such cognitive state of increasing spatial orientation demands in virtual reality research with 96% accurate on average
Attractive Interaction Between Pulses in a Model for Binary-Mixture Convection
Recent experiments on convection in binary mixtures have shown that the
interaction between localized waves (pulses) can be repulsive as well as {\it
attractive} and depends strongly on the relative {\it orientation} of the
pulses. It is demonstrated that the concentration mode, which is characteristic
of the extended Ginzburg-Landau equations introduced recently, allows a natural
understanding of that result. Within the standard complex Ginzburg-Landau
equation this would not be possible.Comment: 7 pages revtex with 3 postscript figures (uuencoded
Dynamic visual information facilitates object recognition from novel viewpoints
Normally, people have difficulties recognizing objects from novel as compared to learned views, resulting in increased reaction times and errors. Recent studies showed, however, that this "view-dependency" can be reduced or even completely eliminated when novel views result from observer's movements instead of object movements. This observer movement benefit was previously attributed to extra-retinal (physical motion) cues. In two experiments, we demonstrate that dynamic visual information (that would normally accompany observer's movements) can provide a similar benefit and thus a potential alternative explanation. Participants performed sequential matching tasks for Shepard-Metzler-like objects presented via head-mounted display. As predicted by the literature, object recognition performance improved when view changes (45-or 90-) resulted from active observer movements around the object instead of object movements. Unexpectedly, however, merely providing dynamic visual information depicting the viewpoint change showed an equal benefit, despite the lack of any extra-retinal/physical self-motion cues. Moreover, visually simulated rotations of the table and hidden target object (table movement condition) yielded similar performance benefits as simulated viewpoint changes (scene movement condition). These findings challenge the prevailing notion that extra-retinal (physical motion) cues are required for facilitating object recognition from novel viewpoints, and highlight the importance of dynamic visual cues, which have previously received little attention
Parametric Forcing of Waves with Non-Monotonic Dispersion Relation: Domain Structures in Ferrofluids?
Surface waves on ferrofluids exposed to a dc-magnetic field exhibit a
non-monotonic dispersion relation. The effect of a parametric driving on such
waves is studied within suitable coupled Ginzburg-Landau equations. Due to the
non-monotonicity the neutral curve for the excitation of standing waves can
have up to three minima. The stability of the waves with respect to long-wave
perturbations is determined a phase-diffusion equation. It shows that the
band of stable wave numbers can split up into two or three sub-bands. The
resulting competition between the wave numbers corresponding to the respective
sub-bands leads quite naturally to patterns consisting of multiple domains of
standing waves which differ in their wave number. The coarsening dynamics of
such domain structures is addressed.Comment: 23 pages, 6 postscript figures, composed using RevTeX. Submitted to
PR
Worm Structure in Modified Swift-Hohenberg Equation for Electroconvection
A theoretical model for studying pattern formation in electroconvection is
proposed in the form of a modified Swift-Hohenberg equation. A localized state
is found in two dimension, in agreement with the experimentally observed
``worm" state. The corresponding one dimensional model is also studied, and a
novel stationary localized state due to nonadiabatic effect is found. The
existence of the 1D localized state is shown to be responsible for the
formation of the two dimensional ``worm" state in our model
Whirling Hexagons and Defect Chaos in Hexagonal Non-Boussinesq Convection
We study hexagon patterns in non-Boussinesq convection of a thin rotating
layer of water. For realistic parameters and boundary conditions we identify
various linear instabilities of the pattern. We focus on the dynamics arising
from an oscillatory side-band instability that leads to a spatially disordered
chaotic state characterized by oscillating (whirling) hexagons. Using
triangulation we obtain the distribution functions for the number of pentagonal
and heptagonal convection cells. In contrast to the results found for defect
chaos in the complex Ginzburg-Landau equation and in inclined-layer convection,
the distribution functions can show deviations from a squared Poisson
distribution that suggest non-trivial correlations between the defects.Comment: 4 mpg-movies are available at
http://www.esam.northwestern.edu/~riecke/lit/lit.html submitted to New J.
Physic
Direct Hopf Bifurcation in Parametric Resonance of Hybridized Waves
We study parametric resonance of interacting waves having the same wave
vector and frequency. In addition to the well-known period-doubling instability
we show that under certain conditions the instability is caused by a Hopf
bifurcation leading to quasiperiodic traveling waves. It occurs, for example,
if the group velocities of both waves have different signs and the damping is
weak. The dynamics above the threshold is briefly discussed. Examples
concerning ferromagnetic spin waves and surface waves of ferro fluids are
discussed.Comment: Appears in Phys. Rev. Lett., RevTeX file and three postscript
figures. Packaged using the 'uufiles' utility, 33 k
- …