2,912 research outputs found
Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers
In this paper, we present a black-box attack against API call based machine
learning malware classifiers, focusing on generating adversarial sequences
combining API calls and static features (e.g., printable strings) that will be
misclassified by the classifier without affecting the malware functionality. We
show that this attack is effective against many classifiers due to the
transferability principle between RNN variants, feed forward DNNs, and
traditional machine learning classifiers such as SVM. We also implement GADGET,
a software framework to convert any malware binary to a binary undetected by
malware classifiers, using the proposed attack, without access to the malware
source code.Comment: Accepted as a conference paper at RAID 201
Competing effects of mass anisotropy and spin Zeeman coupling on the upper critical field of a mixed - and s-wave superconductor
Based on the linearized Eilenberger equations, the upper critical field
of mixed d- and s-wave superconductors has been microscopically
studied with an emphasis on the competing effects of mass anisotropy and spin
Zeeman coupling. We find the mass anisotropy always enhance while the
Zeeman interaction suppresses . As required by the thermodynamics, we
find is saturated at zero temperature. We compare the theoretical
calculations with recent experimental data of
YBaCuO.Comment: To appear in PRB in Feb. 200
Anomalous Self-Energy Effects of the B_1g Phonon in Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 Films
In Raman spectra of cuprate superconductors the gap shows up both directly,
via a redistribution of the electronic background, the so-called "2Delta
peaks", and indirectly, e.g. via the renormalization of phononic excitations.
We use a model that allows us to study the redistribution and the related
phonon self-energy effects simultaneously. We apply this model to the B_1g
phonon of Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 films, where Pr or Ca substitution
enables us to investigate under- and overdoped samples. While various
self-energy effects can be explained by the strength and energy of the 2\Delta
peaks, anomalies remain. We discuss possible origins of these anomalies.Comment: 6 pages including 4 figure
Analytical Formulation of the Local Density of States around a Vortex Core in Unconventional Superconductors
On the basis of the quasiclassical theory of superconductivity, we obtain a
formula for the local density of states (LDOS) around a vortex core of
superconductors with anisotropic pair-potential and Fermi surface in arbitrary
directions of magnetic fields. Earlier results on the LDOS of d-wave
superconductors and NbSe are naturally interpreted within our theory
geometrically; the region with high intensity of the LDOS observed in numerical
calculations turns out to the enveloping curve of the trajectory of Andreev
bound states. We discuss experimental results on YNiBC within the
quasiclassical theory of superconductivity.Comment: 13 pages, 16 figure
Metals in high magnetic field: a new universality class of Fermi liquids
Parquet equations, describing the competition between superconducting and
density-wave instabilities, are solved for a three-dimensional isotropic metal
in a high magnetic field when only the lowest Landau level is filled. In the
case of a repulsive interaction between electrons, a phase transition to the
density-wave state is found at finite temperature. In the opposite case of
attractive interaction, no phase transition is found. With decreasing
temperature , the effective vertex of interaction between electrons
renormalizes toward a one-dimensional limit in a self-similar way with the
characteristic length (transverse to the magnetic field) decreasing as
( is a cutoff). Correlation functions have
new forms, previously unknown for conventional one-dimensional or
three-dimensional Fermi-liquids.Comment: 13 pages + 4 figures (included
Fermi Liquid Damping and NMR Relaxation in Superconductors
Electron collisions for a two dimensional Fermi liquid (FL) are shown to give
a quasiparticle damping with interesting frequency and temperature variations
in the BCS superconducting state. The spin susceptibility which determines the
structure of the damping is analyzed in the normal state for a Hubbard model
with a constant on--site Coulomb repulsion. This is then generalized to the
superconducting state by including coherence factors and self energy and vertex
corrections. Calculations of the NMR relaxation rate reveal that the FL damping
structure can reduce the Hebel--Slichter peak, in agreement with data on the
organic superconductor (MDT-TTF)AuI. However, the strongly suppressed
FL damping in the superconducting state does not eliminate the Hebel-Slichter
peak, and thus suggests that other mechanisms are needed to explain the NMR
data on (TMTSF)ClO, the BEDT organic compounds, and cuprate
superconductors. Predictions of the temperature variation of the damping and
the spin response are given over a wide frequency range as a guide to
experimental probes of the symmetry of the superconducting pairs.Comment: 10 pages, RevTeX 3.0, 9 figures in uuencoded postscrip
Antiepileptic drugs’ tolerability and safety – a systematic review and meta-analysis of adverse effects in dogs
<p>Various anti-epileptic drugs (AEDs) are used for the management of idiopathic epilepsy (IE) in dogs. Their safety profile is an important consideration for regulatory bodies, owners and prescribing clinicians. However, information on their adverse effects still remains limited with most of it derived from non-blinded non-randomized uncontrolled trials and case reports.</p><p><span>This poster won third place, which was presented at the Veterinary Evidence Today conference, Edinburgh November 1-3, 2016. </span></p><br /> <img src="https://www.veterinaryevidence.org/rcvskmod/icons/oa-icon.jpg" alt="Open Access" /
- …