2 research outputs found

    A homomorphism between link and XXZ modules over the periodic Temperley-Lieb algebra

    Full text link
    We study finite loop models on a lattice wrapped around a cylinder. A section of the cylinder has N sites. We use a family of link modules over the periodic Temperley-Lieb algebra EPTL_N(\beta, \alpha) introduced by Martin and Saleur, and Graham and Lehrer. These are labeled by the numbers of sites N and of defects d, and extend the standard modules of the original Temperley-Lieb algebra. Beside the defining parameters \beta=u^2+u^{-2} with u=e^{i\lambda/2} (weight of contractible loops) and \alpha (weight of non-contractible loops), this family also depends on a twist parameter v that keeps track of how the defects wind around the cylinder. The transfer matrix T_N(\lambda, \nu) depends on the anisotropy \nu and the spectral parameter \lambda that fixes the model. (The thermodynamic limit of T_N is believed to describe a conformal field theory of central charge c=1-6\lambda^2/(\pi(\lambda-\pi)).) The family of periodic XXZ Hamiltonians is extended to depend on this new parameter v and the relationship between this family and the loop models is established. The Gram determinant for the natural bilinear form on these link modules is shown to factorize in terms of an intertwiner i_N^d between these link representations and the eigenspaces of S^z of the XXZ models. This map is shown to be an isomorphism for generic values of u and v and the critical curves in the plane of these parameters for which i_N^d fails to be an isomorphism are given.Comment: Replacement of "The Gram matrix as a connection between periodic loop models and XXZ Hamiltonians", 31 page

    Fusion rules and boundary conditions in the c=0 triplet model

    Full text link
    The logarithmic triplet model W_2,3 at c=0 is studied. In particular, we determine the fusion rules of the irreducible representations from first principles, and show that there exists a finite set of representations, including all irreducible representations, that closes under fusion. With the help of these results we then investigate the possible boundary conditions of the W_2,3 theory. Unlike the familiar Cardy case where there is a consistent boundary condition for every representation of the chiral algebra, we find that for W_2,3 only a subset of representations gives rise to consistent boundary conditions. These then have boundary spectra with non-degenerate two-point correlators.Comment: 50 pages; v2: changed formulation in section 1.2.1 and corrected typos, version to appear in J. Phys.
    corecore