2,742 research outputs found

    Superforms in six-dimensional superspace

    Get PDF
    Indexación: Web of ScienceWe investigate the complex of differential forms in curved, six-dimensional, N = (1, 0) superspace. The superconformal group acts on this complex by super-Weyl transformations. An ambi-twistor-like representation of a second conformal group arises on a pure spinor subspace of the cotangent space. The p-forms are defined by super-Weylcovariant tensor fields on this pure spinor subspace. The on-shell dynamics of such fields is superconformal. We construct the superspace de Rham complex by successively obstructing the closure of forms. We then extend the analysis to composite forms obtained by wedging together forms of lower degree. Finally, we comment on applications to integration in curved superspace and propose a superspace formulation of the abelian limit of the non-abelian tensor hierarchy of N = (1, 0) superconformal models.http://link.springer.com/article/10.1007%2FJHEP05%282016%29016#aboutarticl

    Novel accent perception in typically-developing school-aged children

    Get PDF
    Many schools in Western countries like the United Kingdom have become increasingly diverse communities in recent years, and children are likely to be exposed to a variety of accents that are different from their own. While there is a wide body of research exploring accent comprehension in the adult population and in infancy, little has been done to investigate the impact that an unfamiliar accent has on perception in school-aged children. This study investigated the effect of an unfamiliar novel accent on the ability of typically-developing children aged 6 and 7 years to repeat simple sentences. Stimuli were presented in speech-shaped noise using an adaptive staircase procedure in order to compare the speech reception thresholds of the two accents. Participants were required to repeat back short English sentences, and their speech reception thresholds were calculated as the sound-to-noise ratio in which they were able to repeat back 100% of the key words in the sentence. Results showed that the participants required a significantly higher signal-to-noise ratio (i.e. less noise) to achieve the same level of comprehension for the novel accent as the familiar accent. Measures of cognitive flexibility and selective attention were also taken but were not found to correlate with performance with the unfamiliar accent. These findings have implications for professionals working with children and should alert them to the possible difficulties in communication as a result of unfamiliar accent

    Structural and elastic characterization of Cu-implanted SiO₂ films on Si(100) substrates

    Get PDF
    Cu-implanted SiO₂ films on Si(100) have been studied and compared to unimplanted SiO₂ on Si(100) using x-ray methods, transmission electron microscopy, Rutherford backscattering, and Brillouin spectroscopy. The x-ray results indicate the preferred orientation of Cu {111} planes parallel to the Si substrate surface without any directional orientation for Cu-implanted SiO₂∕Si(100) and for Cu-implanted and annealedSiO₂∕Si(100). In the latter case, transmission electron microscopy reveals the presence of spherical nanocrystallites with an average size of ∼2.5 nm. Rutherford backscattering shows that these crystallites (and the Cu in the as-implanted film) are largely confined to depths of 0.4−1.2 μm below the film surface. Brillouin spectra contain peaks due to surface, film-guided and bulk acoustic modes. Surface (longitudinal) acoustic wave velocities for the implanted films were ∼7% lower (∼2% higher) than for unimplanted SiO₂∕Si(100). Elastic constants were estimated from the acoustic wave velocities and film densities. C₁₁ (C₄₄) for the implanted films was ∼10% higher (lower) than that for the unimplanted film. The differences in acoustic velocities and elastic moduli are ascribed to implantation-induced compaction and/or the presence of Cu in the SiO₂ film.B.J. and M.C.R. are grateful for financial support from the Australian Synchrotron Research Program, funded by the Commonwealth of Australia. M.C.R. would also like to thank the Australian Research Council for their financial support. The financial support of the Natural Sciences and Engineering Research Council of Canada NSERC is gratefully acknowledged by G.T.A. and J.S

    A study of symmetry breaking in a relativistic Bose gas using the contraction algorithm

    Get PDF
    A relativistic Bose gas at finite density suffers from a sign problem that makes direct numerical simulations not feasible. One possible solution to the sign problem is to re-express the path integral in terms of Lefschetz thimbles. Using this approach we study the relativistic Bose gas both in the symmetric phase (low-density) and the spontaneously broken phase (high-density). In the high-density phase we break explicitly the symmetry and determine the dependence of the order parameter on the breaking. We study the relative contributions of the dominant and sub-dominant thimbles in this phase. We find that the sub-dominant thimble only contributes substantially when the explicit symmetry breaking is small, a regime that is dominated by finite volume effects. In the regime relevant for the thermodynamic limit, this contribution is negligible.Comment: 12 pages, 6 figures, 1 tabl

    Extended x-ray absorption fine structure study of porous GaSb formed by ion implantation

    Get PDF
    Porous GaSb has been formed by Ga ion implantation into crystalline GaSb substrates at either room temperature or −180 °C. The morphology has been characterized using scanning electron microscopy and the atomic structure was determined using extended x-ray absorption fine structure spectroscopy. Room-temperature implantation at low fluences leads to the formation of ∼20-nm voids though the material remains crystalline. Higher fluences cause the microstructure to evolve into a network of amorphous GaSb rods ∼15 nm in diameter. In contrast, implantation at −180 °C generates large, elongated voids but no rods. Upon exposure to air, the surface of the porous material is readily oxidized yielding Ga₂O₃ and metallic Sb precipitates, the latter resulting from the reduction of unstable Sb₂O₃. We consider and discuss the atomic-scale mechanisms potentially operative during the concurrent crystalline-to-amorphous and continuous-to-porous transformations

    Exploring the meaning in meaningful coincidences: an interpretative phenomenological analysis of synchronicity in therapy

    Get PDF
    Synchronicity experiences (SEs) are defined as psychologically meaningful connections between inner events (e.g., thought, dream or vision) and one or more external events occurring simultaneously or at a future point in time. There has been limited systematic research that has investigated the phenomenology of SEs in therapy. This study aimed to redress this by exploring the process and nature of such experiences from the perspective of the practitioner. Interpretative phenomenological analysis (IPA; Smith, Flowers, & Larkin, 2009) was used to interview a purposive sample of nine practitioners who reported SEs in their therapeutic sessions. Semi-structured face-to-face interviews were conducted with three counsellors, three psychologists and three psychotherapists, and focused on how participants make sense of their experiences of synchronicity in therapy. Three superordinate themes were identified: Sense of connectedness, therapeutic process, and professional issues. Findings suggest that SEs can serve to strengthen the therapeutic relationship and are perceived as useful harbingers of information about the therapeutic process, as well as being a means of overcoming communication difficulties, as they are seen to provide insights into the client’s experiencing of themselves and others, regardless of whether or not the SE is acknowledged by the client or disclosed by the therapist

    Topological Optimization of the Evaluation of Finite Element Matrices

    Full text link
    We present a topological framework for finding low-flop algorithms for evaluating element stiffness matrices associated with multilinear forms for finite element methods posed over straight-sided affine domains. This framework relies on phrasing the computation on each element as the contraction of each collection of reference element tensors with an element-specific geometric tensor. We then present a new concept of complexity-reducing relations that serve as distance relations between these reference element tensors. This notion sets up a graph-theoretic context in which we may find an optimized algorithm by computing a minimum spanning tree. We present experimental results for some common multilinear forms showing significant reductions in operation count and also discuss some efficient algorithms for building the graph we use for the optimization

    Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO2

    Get PDF
    We report on the observation of nanoscale density fluctuations in 2 μm thick amorphous SiO₂ layers irradiated with 185 MeV Au ions. At high fluences, in excess of approximately 5 × 10¹² ions/cm², where the surface is completely covered by ion tracks, synchrotron small angle x-ray scattering measurements reveal the existence of a steady state of density fluctuations. In agreement with molecular dynamics simulations, this steady state is consistent with an ion track “annihilation” process, where high-density regions generated in the periphery of new tracks fill in low-density regions located at the center of existing tracks.The authors acknowledge the Australian Research Council and the Australian Synchrotron Research Program for financial support and thank the staff at the ANU Heavy Ion facility for their continued technical assistance. O.P., F.D., and K.N. acknowledge financial support from the Academy of Finland under its Centre of Excellence program as well as the OPNA project, and grants of computer capacity from CSC
    corecore