915 research outputs found
Generation M2: Media in the Lives of 8- to 18-Year-Olds
Examines trends in which media youth use, for how much time, how new media platforms have affected media consumption, what role mobile and online media play, what media environment youth live in, and how patterns vary by gender, age, and race/ethnicity
Alien Registration- Rideout, Vera G. (Portland, Cumberland County)
https://digitalmaine.com/alien_docs/21591/thumbnail.jp
Manifold dimension of a causal set: Tests in conformally flat spacetimes
This paper describes an approach that uses flat-spacetime dimension
estimators to estimate the manifold dimension of causal sets that can be
faithfully embedded into curved spacetimes. The approach is invariant under
coarse graining and can be implemented independently of any specific curved
spacetime. Results are given based on causal sets generated by random
sprinklings into conformally flat spacetimes in 2, 3, and 4 dimensions, as well
as one generated by a percolation dynamics.Comment: 8 pages, 8 figure
Generation M: Media in the Lives of 8-18 Year-olds
A national Kaiser Family Foundation survey found children and teens are spending an increasing amount of time using "new media" like computers, the Internet and video games, without cutting back on the time they spend with "old" media like TV, print and music. Instead, because of the amount of time they spend using more than one medium at a time (for example, going online while watching TV), they're managing to pack increasing amounts of media content into the same amount of time each day. The study, Generation M: Media in the Lives of 8-18 Year-olds, examined media use among a nationally representative sample of more than 2,000 3rd through 12th graders who completed detailed questionnaires, including nearly 700 self-selected participants who also maintained seven-day media diaries
Quantum Dynamics without the Wave Function
When suitably generalized and interpreted, the path-integral offers an
alternative to the more familiar quantal formalism based on state-vectors,
selfadjoint operators, and external observers. Mathematically one generalizes
the path-integral-as-propagator to a {\it quantal measure} on the space
of all ``conceivable worlds'', and this generalized measure expresses
the dynamics or law of motion of the theory, much as Wiener measure expresses
the dynamics of Brownian motion. Within such ``histories-based'' schemes new,
and more ``realistic'' possibilities open up for resolving the philosophical
problems of the state-vector formalism. In particular, one can dispense with
the need for external agents by locating the predictive content of in its
sets of measure zero: such sets are to be ``precluded''. But unrestricted
application of this rule engenders contradictions. One possible response would
remove the contradictions by circumscribing the application of the preclusion
concept. Another response, more in the tradition of ``quantum logic'', would
accommodate the contradictions by dualizing to a space of
``co-events'' and effectively identifying reality with an element of this dual
space.Comment: plainTeX, 24 pages, no figures. To appear in a special volume of {\it
Journal of Physics A: Mathematical and General} entitled ``The Quantum
Universe'' and dedicated to Giancarlo Ghirardi on the occasion of his 70th
birthday. Most current version is available at
http://www.physics.syr.edu/~sorkin/some.papers/ (or wherever my home-page may
be
Spatial Hypersurfaces in Causal Set Cosmology
Within the causal set approach to quantum gravity, a discrete analog of a
spacelike region is a set of unrelated elements, or an antichain. In the
continuum approximation of the theory, a moment-of-time hypersurface is well
represented by an inextendible antichain. We construct a richer structure
corresponding to a thickening of this antichain containing non-trivial
geometric and topological information. We find that covariant observables can
be associated with such thickened antichains and transitions between them, in
classical stochastic growth models of causal sets. This construction highlights
the difference between the covariant measure on causal set cosmology and the
standard sum-over-histories approach: the measure is assigned to completed
histories rather than to histories on a restricted spacetime region. The
resulting re-phrasing of the sum-over-histories may be fruitful in other
approaches to quantum gravity.Comment: Revtex, 12 pages, 2 figure
Proper time and Minkowski structure on causal graphs
For causal graphs we propose a definition of proper time which for small
scales is based on the concept of volume, while for large scales the usual
definition of length is applied. The scale where the change from "volume" to
"length" occurs is related to the size of a dynamical clock and defines a
natural cut-off for this type of clock. By changing the cut-off volume we may
probe the geometry of the causal graph on different scales and therey define a
continuum limit. This provides an alternative to the standard coarse graining
procedures. For regular causal lattice (like e.g. the 2-dim. light-cone
lattice) this concept can be proven to lead to a Minkowski structure. An
illustrative example of this approach is provided by the breather solutions of
the Sine-Gordon model on a 2-dimensional light-cone lattice.Comment: 15 pages, 4 figure
Causal Sets: Quantum gravity from a fundamentally discrete spacetime
In order to construct a quantum theory of gravity, we may have to abandon
certain assumptions we were making. In particular, the concept of spacetime as
a continuum substratum is questioned. Causal Sets is an attempt to construct a
quantum theory of gravity starting with a fundamentally discrete spacetime. In
this contribution we review the whole approach, focusing on some recent
developments in the kinematics and dynamics of the approach.Comment: 10 pages, review of causal sets based on talk given at the 1st MCCQG
conferenc
Covariant entropy conjecture and concordance cosmological models
Recently a covariant entropy conjecture has been proposed for dynamical
horizons. We apply this conjecture to concordance cosmological models, namely,
those cosmological models filled with perfect fluids, in the presence of a
positive cosmological constant. As a result, we find this conjecture has a
severe constraint power. Not only does this conjecture rule out those
cosmological models disfavored by the anthropic principle, but also it imposes
an upper bound on the cosmological constant for our own universe,
which thus provides an alternative macroscopic perspective for understanding
the long-standing cosmological constant problem.Comment: 10 pages, 1 figure, JHEP style, references added, published versio
- …