1,009 research outputs found

    Definable and invariant types in enrichments of NIP theories

    Full text link
    Let T be an NIP L-theory and T' be an enrichment. We give a sufficient condition on T' for the underlying L-type of any definable (respectively invariant) type over a model of T' to be definable (respectively invariant) as an L-type. Besides, we generalise work of Simon and Starchenko on the density of definable types among non forking types to this relative setting. These results are then applied to Scanlon's model completion of valued differential fields.Comment: 9 pages. An error was pointed out in section 2 of the previous version so that section was removed. So was Proposition 3.8 that depended on i

    Valued fields, Metastable groups

    Full text link
    We introduce a class of theories called metastable, including the theory of algebraically closed valued fields (ACVF) as a motivating example. The key local notion is that of definable types dominated by their stable part. A theory is metastable (over a sort Γ\Gamma) if every type over a sufficiently rich base structure can be viewed as part of a Γ\Gamma-parametrized family of stably dominated types. We initiate a study of definable groups in metastable theories of finite rank. Groups with a stably dominated generic type are shown to have a canonical stable quotient. Abelian groups are shown to be decomposable into a part coming from Γ\Gamma, and a definable direct limit system of groups with stably dominated generic. In the case of ACVF, among definable subgroups of affine algebraic groups, we characterize the groups with stably dominated generics in terms of group schemes over the valuation ring. Finally, we classify all fields definable in ACVF.Comment: 48 pages. Minor corrections and improvements following a referee repor

    Imaginaries in separably closed valued fields

    Full text link
    We show that separably closed valued fields of finite imperfection degree (either with lambda-functions or commuting Hasse derivations) eliminate imaginaries in the geometric language. We then use this classification of interpretable sets to study stably dominated types in those structures. We show that separably closed valued fields of finite imperfection degree are metastable and that the space of stably dominated types is strict pro-definable

    Definable equivalence relations and zeta functions of groups

    Full text link
    We prove that the theory of the pp-adics Qp{\mathbb Q}_p admits elimination of imaginaries provided we add a sort for GLn(Qp)/GLn(Zp){\rm GL}_n({\mathbb Q}_p)/{\rm GL}_n({\mathbb Z}_p) for each nn. We also prove that the elimination of imaginaries is uniform in pp. Using pp-adic and motivic integration, we deduce the uniform rationality of certain formal zeta functions arising from definable equivalence relations. This also yields analogous results for definable equivalence relations over local fields of positive characteristic. The appendix contains an alternative proof, using cell decomposition, of the rationality (for fixed pp) of these formal zeta functions that extends to the subanalytic context. As an application, we prove rationality and uniformity results for zeta functions obtained by counting twist isomorphism classes of irreducible representations of finitely generated nilpotent groups; these are analogous to similar results of Grunewald, Segal and Smith and of du Sautoy and Grunewald for subgroup zeta functions of finitely generated nilpotent groups.Comment: 89 pages. Various corrections and changes. To appear in J. Eur. Math. So
    • …
    corecore