795 research outputs found

    Status of the TMT site evaluation process

    Get PDF
    The Thirty Meter Telescope (TMT) is currently acquiring site characterization data at ve candidate sites. The site testing equipment includes instruments for measuring the seeing and seeing proles, meteorological conditions, cloudiness, precipitable water vapor, etc. All site testing equipment and data have gone through extensive calibrations and verications in order to assure that a reliable and quantitative comparison between the candidate sites will be possible. Here, we present an update on the status of the site selection work, the equipment characterizations and the resulting accuracies of our site selection data

    Whole Earth Telescope observations of the subdwarf B star KPD1930+2752: a rich, short-period pulsator in a close binary

    Get PDF
    KPD 1930+2752 is a short-period pulsating subdwarf B (sdB) star. It is also an ellipsoidal variable with a known binary period of 2.3 h. The companion is most likely a white dwarf and the total mass of the system is close to the Chandresekhar limit. In this paper, we report the results of Whole Earth Telescope (WET) photometric observations during 2003 and a smaller multisite campaign of 2002. From 355 h of WET data, we detect 68 pulsation frequencies and suggest an additional 13 frequencies within a crowded and complex temporal spectrum between 3065 and 6343 μHz (periods between 326 and 157 s). We examine pulsation properties including phase and amplitude stability in an attempt to understand the nature of the pulsation mechanism. We examine a stochastic mechanism by comparing amplitude variations with simulated stochastic data. We also use the binary nature of KPD 1930+2752 for identifying pulsation modes via multiplet structure and a tidally induced pulsation geometry. Our results indicate a complicated pulsation structure that includes short-period (≈16 h) amplitude variability, rotationally split modes, tidally induced modes and some pulsations which are geometrically limited on the sdB star

    Evaluation of sonic anemometers as highly sensitive optical turbulence measuring devices for the Thirty Meter Telescope site testing campaign

    Get PDF
    The Thirty Meter Telescope (TMT) site testing programme is evaluating the use of sonic anemometers as a means of measuring the optical turbulence at the level of its MASS/DIMM telescopes (7m). Tests were performed where sonic anemometers were directly compared against a differenced fine wire thermocouple system. We also show here that fine wire thermocouples produce turbulence measurements comparable to those from a traditional microthermal probe system

    Gattini: a multisite campaign for the measurement of sky brightness in Antarctica

    Get PDF
    We present the Gattini project: a multisite campaign to measure the optical sky properties above the two high altitude Antarctic astronomical sites of Dome C and Dome A. The Gattini-DomeC project, part of the IRAIT site testing campaign and ongoing since January 2006, consists of two cameras for the measurement of optical sky brightness, large area cloud cover and auroral detection above the DomeC site, home of the French-Italian Concordia station. The cameras are transit in nature and are virtually identical except for the nature of the lenses. The cameras have operated successfully throughout the past two Antarctic winter seasons and here we present the first results obtained from the returned 2006 dataset. The Gattini-DomeA project will place a similar site testing facility at the highest point on the Antarctic plateau, Dome A, with observations commencing in 2008. The project forms a small part of a much larger venture coordinated by the Polar Research Institute of China as part of the International Polar Year whereby an automated site testing facility called PLATO will be traversed into the DomeA site. The status of this exciting and ambitious project with regards to the Gattini-DomeA cameras will be presented

    Laser-only adaptive optics achieves significant image quality gains compared to seeing-limited observations over the entire sky

    Get PDF
    Adaptive optics laser guide star systems perform atmospheric correction of stellar wavefronts in two parts: stellar tip-tilt and high-spatial-order laser-correction. The requirement of a sufficiently bright guide star in the field-of-view to correct tip-tilt limits sky coverage. Here we show an improvement to effective seeing without the need for nearby bright stars, enabling full sky coverage by performing only laser-assisted wavefront correction. We used Robo-AO, the first robotic AO system, to comprehensively demonstrate this laser-only correction. We analyze observations from four years of efficient robotic operation covering 15,000 targets and 42,000 observations, each realizing different seeing conditions. Using an autoguider (or a post-processing software equivalent) and the laser to improve effective seeing independent of the brightness of a target, Robo-AO observations show a 39+/-19% improvement to effective FWHM, without any tip-tilt correction. We also demonstrate that 50% encircled-energy performance without tip-tilt correction remains comparable to diffraction-limited, standard Robo-AO performance. Faint-target science programs primarily limited by 50% encircled-energy (e.g. those employing integral field spectrographs placed behind the AO system) may see significant benefits to sky coverage from employing laser-only AO.Comment: Accepted for publication in The Astronomical Journal. 7 pages, 6 figure

    Multiplicity of the Galactic Senior Citizens: A high-resolution search for cool subdwarf companions

    Get PDF
    Cool subdwarfs are the oldest members of the low mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low metallicity. Measuring their binary fraction and comparing it to solar metallicity stars could give key insights into the star formation process early in the history of the Milky Way. However, because of their low luminosity and relative rarity in the solar neighborhood, binarity surveys of cool subdwarfs have suffered from small sample sizes and incompleteness. Previous surveys have suggested that the binary fraction of red subdwarfs is much lower than for their main sequence cousins. Using the highly efficient RoboAO system, we present the largest yet high-resolution survey of subdwarfs, sensitive to angular separations, down to 0.15 arcsec, and contrast ratios, up to 6 magnitude difference, invisible in past surveys. Of 344 target cool subdwarfs, 40 are in multiple systems, 16 newly discovered, for a binary fraction of 11.6 percent and 1.8 percent error. We also discovered 6 triple star systems for a triplet fraction of 1.7 percent and 0.7 percent error. Comparisons to similar surveys of solar metallicity dwarf stars gives a 3 sigma disparity in luminosity between companion stars, with subdwarfs displaying a shortage of low contrast companions.Comment: 13 pages, 10 figures, submitted to Ap

    Planet Hunters. VIII. Characterization of 41 Long-Period Exoplanet Candidates from Kepler Archival Data

    Get PDF
    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4''. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations
    corecore