6 research outputs found

    Small Size Transition-Edge Sensors for Future X-Ray Applications

    No full text
    Large arrays of transition edge sensors (TESs) are the baseline for a number of future space observatories. For instance, the X-ray integral field unit (X-IFU) instrument on board the ATHENA space telescope will consist of ∼ 3000 TESs with high energy resolution (2eV at X-ray energies up to 7 keV). In this contribution we report on the development of an X-ray TES array as a backup detector technology for X-IFU. The baseline readout technology for this mission is time domain multiplexing where the detectors are DC biased. Specifically, we report on the characterization of four different Ti/Au TESs with the following dimensions (L × W): 30 × 15 , 30 × 30 , 50 × 25 and 50×50μm2, all of which are coupled to a 2.3μm thick Au absorber of area 240×240μm2. We have performed our characterization using our standard frequency domain multiplexing readout connecting only pixels at low frequencies, where nonlinear effects due to the AC biasing are negligible. Promising energy resolution has been obtained, for instance 1.78±0.10eV and 1.75±0.10eV at 5.9 keV for the 50 × 25 and 50×50μm2 detectors respectively. Uniformity over a kilo-pixel array (of detectors with the same geometry) has been also studied, confirming the high quality of our fabrication process.Funding Information: This work is funded by the European Space Agency (ESA) under ESA CTP Contract No. 4000130346/20/NL/BW/os. Publisher Copyright: © 2022, The Author(s).ImPhys/Optic

    Impact of the Absorber-Coupling Design for Transition-Edge-Sensor X-Ray Calorimeters

    No full text
    Transition-edge sensors (TESs) are the selected technology for future spaceborne x-ray observatories, such as Athena, Lynx, and HUBS. These missions demand thousands of pixels to be operated simultaneously with high energy-resolving power. To reach these demanding requirements, every aspect of the TES design has to be optimized. Here we present the experimental results of tests on different devices where the coupling between the x-ray absorber and the TES is varied. In particular, we look at the effects of the diameter of the coupling stems and the distance between the stems and the TES bilayer. Based on measurements of the ac complex impedance and noise, we observe a reduction in the excess noise as the spacing between the absorber stem and the bilayer is decreased. We identify the origin of this excess noise to be internal thermal fluctuation noise between the absorber stem and the bilayer. In addition, we see an impact of the coupling on the superconducting transition in the appearance of kinks. Our observations show that these unwanted structures in the transition shape can be avoided with careful design of the coupling geometry. The stem diameter appears to have a significant effect on the smoothness of the TES transition. This observation is still poorly understood, but is of great importance for both ac and dc biased TESs.ImPhys/Optic

    Performance of the SRON Ti/Autransition edge sensor x-ray calorimeters

    No full text
    In the early 2030s, ESAs new X-ray observatory, Athena, is scheduled to be launched. It will carry two maininstruments, one of which is the X-ray Integral Field Unit (X-IFU), an X-ray imaging spectrometer, which will consist of an array of several thousand transition-edge sensors (TESs) with a proposed energy resolution of 2.5 eV for photon energies up to 7 keV. At SRON we develop the backup TES array based on Ti/Au bilayers with a transition temperature just below 100 mK. In this contribution we will give a broad overview of the properties and capabilities of these state-of-the-art detectors. Over the years we have fabricated and studied a large number of detectors with various geometries, providing us with a good understanding of how to precisely control the properties of our detectors. We are able to accurately vary the most important detector properties, such as the normal resistance, thermal conductance and critical temperature. This allows us to finely tune our detectors to meet the demands of various applications. The detectors have demonstrated excellent energy resolutions of below 1.8 eV for 5.9 keV X-rays. By tuning the properties of the devices, they can be optimally matched to various read-out schemes using both AC and DC biasing. The next step is to increase the size of our TES arrays from our current kilo-pixel arrays towards the full-sized array for X-IFU.Accepted Authors ManuscriptImPhys/Optic

    AC/DC Characterization of a Ti/Au TES with Au/Bi Absorber for X-ray Detection

    No full text
    Transition-edge sensors (TESs) are used as very sensitive thermometers in microcalorimeters aimed at detection of different wavelengths. In particular, for soft X-ray astrophysics, science goals require very high-resolution microcalorimeters which can be achieved with TESs coupled to suitable absorbers. For many applications, there is also need for a high number of pixels which typically requires multiplexing in the readout stage. Frequency-domain multiplexing (FDM) is a common scheme and is the baseline proposed for the ATHENA mission. FDM requires biasing the TES in AC at MHz frequencies. Recently, there has been reported degradation in performances under AC with respect to DC bias. In order to assess the performances of TESs to be used with FDM, it is thus of great interest to compare the performances of the same device both under AC bias and DC bias. This requires two different measurement set-ups with different processes for making the characterization. We report in this work the preliminary results of a single-pixel characterization performed on a TiAu TES under AC and afterwards under DC bias in different facilities. Extraction of dynamical parameters and noise performances are compared in both cases as a first stage for further AC/DC comparison of these devices.Accepted Author ManuscriptImPhys/Optic

    3.9 THz spatial filter based on a back-to-back Si-lens system

    No full text
    We present a terahertz spatial filter consisting of two back-to-back (B2B) mounted elliptical silicon lenses and an opening aperture defined on a thin gold layer between the lenses. The beam filtering efficiency of the B2B lens system is investigated by simulation and experiment. Using a unidirectional antenna coupled 3rd-order distributed feedback (DFB) quantum cascade laser (QCL) at 3.86 THz as the source, the B2B lens system shows 72% transmissivity experimentally with a fundamental Gaussian mode as the input, in reasonably good agreement with the simulated value of 80%. With a proper aperture size, the B2B lens system is capable of filtering the non-Gaussian beam from the QCL to a nearly fundamental Gaussian beam, where Gaussicity increases from 74% to 99%, and achieves a transmissivity larger than 30%. Thus, this approach is proven to be an effective beam shaping technique for QCLs, making them to be suitable local oscillators in the terahertz range with a Gaussian beam. Besides, the B2B lens system is applicable to a wide frequency range if the wavelength dependent part is properly scaled.ImPhys/OpticsQN/van der Zant La

    Frequency division multiplexing readout of 60 low-noise transition-edge sensor bolometers

    No full text
    We demonstrate multiplexing readout of 60 transition edge sensor (TES) bolometers operating at 90 mK using a frequency division multiplexing readout chain with bias frequencies ranging from 1 to 3.5 MHz and with a typical frequency spacing of 32 kHz. The readout chain starts with a two-stage SQUID amplifier and has a noise level of 9.5 pA/ Hz. We compare current-voltage curves and noise spectra of TESs measured in a single-pixel mode and in a multiplexing mode. We also map the noise equivalent power (NEP) and the saturation power of the bolometers in both modes, where there are 43 pixels that do not show more than 10% difference in NEP and 5% in saturation power when measured in single pixel and multiplex modes. We have read out a TES with an NEP of 0.45 aW/ Hz in the multiplexing-mode, which demonstrates the capability of reading out ultra-low noise TES bolometer arrays for space applications.Accepted Author ManuscriptImPhys/Optic
    corecore