6 research outputs found

    Bayesian Latent Variable Models for Biostatistical Applications

    Get PDF
    In this thesis we develop several kinds of latent variable models in order to address three types of bio-statistical problem. The three problems are the treatment effect of carcinogens on tumour development, spatial interactions between plant species and motor unit number estimation (MUNE). The three types of data looked at are: highly heterogeneous longitudinal count data, quadrat counts of species on a rectangular lattice and lastly, electrophysiological data consisting of measurements of compound muscle action potential (CMAP) area and amplitude. Chapter 1 sets out the structure and the development of ideas presented in this thesis from the point of view of: model structure, model selection, and efficiency of estimation. Chapter 2 is an introduction to the relevant literature that has in influenced the development of this thesis. In Chapter 3 we use the EM algorithm for an application of an autoregressive hidden Markov model to describe longitudinal counts. The data is collected from experiments to test the effect of carcinogens on tumour growth in mice. Here we develop forward and backward recursions for calculating the likelihood and for estimation. Chapter 4 is the analysis of a similar kind of data using a more sophisticated model, incorporating random effects, but estimation this time is conducted from the Bayesian perspective. Bayesian model selection is also explored. In Chapter 5 we move to the two dimensional lattice and construct a model for describing the spatial interaction of tree types. We also compare the merits of directed and undirected graphical models for describing the hidden lattice. Chapter 6 is the application of a Bayesian hierarchical model (MUNE), where the latent variable this time is multivariate Gaussian and dependent on a covariate, the stimulus. Model selection is carried out using the Bayes Information Criterion (BIC). In Chapter 7 we approach the same problem by using the reversible jump methodology (Green, 1995) where this time we use a dual Gaussian-Binary representation of the latent data. We conclude in Chapter 8 with suggestions for the direction of new work. In this thesis, all of the estimation carried out on real data has only been performed once we have been satisfied that estimation is able to retrieve the parameters from simulated data. Keywords: Amyotrophic lateral sclerosis (ALS), carcinogens, hidden Markov models (HMM), latent variable models, longitudinal data analysis, motor unit disease (MND), partially ordered Markov models (POMMs), the pseudo auto- logistic model, reversible jump, spatial interactions

    Motor Unit Number Estimation - A Bayesian Approach

    Get PDF
    All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units

    Noticeable, Troublesome and Objectionable Limits of Blur

    Get PDF
    We investigated limits at which induced blur becomes noticeable, troublesome and objectionable. We used 15 cyclopleged subjects, a Badal optometer with lines of three high contrast letters as targets, 3–6 mm artificial pupils, and 0.0–0.7 logMAR letter sizes. For 0.0 logMAR size, mean ‘‘noticeable’’ blur limits were ±0.33D, ±0.30D and ±0.28D at 3 mm, 4 mm and 6 mm, respectively, but increased by about 70% for 0.7 logMAR letters. All limits reduced by about 17% as pupil size increased from 3 mm to 6 mm. Letter size had a significant influence on all blur limits (1.6–2.1 times), but blur direction had no significant effect. Magnitudes of ‘‘troublesome’’ and objectionable’’ limits were 1.6–1.8 times and 2.1–2.5 times relative to ‘‘noticeable’’ limits, respectively. Our results suggest criteria for troublesome and objectionable blur are relatively unaffected by letter size
    corecore