12 research outputs found
From the Shell-shocked Soldier to the Nervous Child: Psychoanalysis in the Aftermath of the First World War
This article investigates the development of child analysis in Britain between the wars, as the anxious child succeeded the shell-shocked soldier as a focus of psychoanalytic enquiry. Historians of psychoanalysis tend to regard the Second World War as a key moment in the discovery of the ‘war within’ the child, but it was in the aftermath of the First War that the warring psyche of the child was observed and elaborated. The personal experience of war and its aftermath, and the attention given to regression in the treatment of war neuroses, encouraged Melanie Klein, Anna Freud and others to turn their attention to children. At the same time, however, the impact of the First World War as a traumatic event, with inter-generational consequences, remained largely unaccounted for within psychoanalysis as Klein and others focused on the child's riven internal world
The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets
This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
Developmental expression of neurokinin-1 and neurokinin-3 receptors in the rat retina
Tachykinin (TK) peptides act on retinal neurons through neurokinin (NK) receptors. We examined the expression of neurokinin-1 (NK1; the substance P receptor), NK3 [the neurokinin B (NKB) receptor], and TK peptides in developing rat retinas. NK1 immunolabeling was found in newborn retinas in rare amacrine cells and in putative ganglion cells. At postnatal day 2 (PND 2), NK1 immunostaining was reduced greatly among ganglion cells, and it appeared in many amacrine cells and in fibers in the inner plexiform layer (IPL), with the highest density in laminae 1, 3, and 5. A similar pattern was found at PND 7. At PND 12, interplexiform NK1-immunoreactive (-IR) cells were detected, and NK1-IR fibers in the IPL were concentrated in lamina 2, similar to what was seen in adults. NK3 was expressed mainly by OFF-cone bipolar cells, and the developmental pattern of NK3 was compared with that of cone bipolar cells that were labeled with antibodies to recoverin. Immature recoverin-IR cone bipolar cells were seen at PND 2. NK3 immunolabeling was detected first in the outer plexiform layer and in sparse bipolar cell somata at PND 10, when recoverin-IR cone bipolar cells are nearly mature. By PND 15, both the NK3 immunostaining pattern and the recoverin immunostaining pattern were similar to the patterns seen in adults. TK immunoreactivity was present at PND 0 in amacrine cells and displaced amacrine cells. By PND 10, the morphologic maturation of TK-IR cells was complete. These findings indicate that, in early postnatal retinas, substance P may act on NK1 receptors, whereas NKB/NK3 interactions are unlikely, suggesting that there are different levels of importance for different TK peptides in the developing retina
Postnatal development of parvalbumin-immunoreactive amacrine cells in the rabbit retina
In the adult rabbit, rat and cat retina, parvalbumin PV. immunoreactivity is primarily localized to a population of narrow-field, bistratified amacrine cells, the AII amacrine cells–major interneurons of the rod pathway. This investigation examines the postnatal
development of PV immunoreactivity in order to better understand the ontogeny of the AII amacrine cell population and the formation of the rod pathway. Rabbit retinas at various postnatal ages were processed for immunohistochemistry using a monoclonal antibody directed
to PV and analyzed morphometrically. On the day of birth, PV immunoreactive cell bodies are numerous in the proximal inner nuclear
layer INL. in all retinal regions. These cells have a primary process directed towards the inner plexiform layer IPL.. At postnatal day PND. 2, a few faint immunoreactive processes are observed in the IPL. At PND 4, well-stained processes are observed to ramify mainly in the proximal IPL. At PND 6, strongly immunoreactive processes are present in both the distal and proximal IPL, and at PND 10 they
form a continuous, dense plexus in both levels of the IPL. By PND 10, the morphology of PV immunoreactive cells is similar to PV immunoreactive cells in adult retinas. The density of PV immunoreactive cells in the proximal INL increases from PND 2 to PND 5, then it gradually decreases to adult values, while the total number of PV immunoreactive cell bodies increases until PND 10. PV
immunoreactive amacrine cells at PND 2, as in the adult, are nonrandomly distributed across the retinal surface. These studies show that
PV immunoreactive amacrine cells have a developmental profile that is similar to several other amacrine cell types. This includes the elaboration of processes in the IPL during the first postnatal week and a mature appearance towards the end of the second week of life,
about the time of eye opening. These observations indicate that the AII amacrine cell may participate in the processing of visual information at eye opening