64 research outputs found

    Productivity and welfare effects of Nigeria's e-voucher-based input subsidy program

    Get PDF
    Article purchased; Available online: 9 May 2017In an attempt to go beyond the so called “smart” subsidies, Nigeria has embarked on a potentially innovative mobile phone-based input subsidy program that provides fertilizer and improved seed subsidies through electronic vouchers. In this article, we examined the productivity and welfare effects of the program using household-level data from rural Nigeria. The article employed instrumental variable regression approach to control for the potential endogeneity of the input subsidy program. Our results suggest that the program is effective in improving productivity and welfare outcomes of beneficiary smallholders. The size of the estimated effects suggests a large improvement in productivity and welfare outcomes. Moreover, the distributional effects of the program suggest no heterogeneity effects based on gender and farm land size. These results are robust to using alternative measurements of program participation. The benefit–cost ratio of 1.11 suggests that the program is marginally cost-effective. Overall, our results suggest that while improving average productivity is a good outcome for improving food security, improving the distributional outcome of the program by targeting the most disadvantaged groups would maximize the program’s contribution to food security and poverty reduction

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    TOI-257b (HD 19916b): A warm sub-saturn orbiting an evolved F-type star

    Get PDF
    We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 M J (43.9 ± 7.3, M⊕), a radius of RP = 0.639 ± 0.013 R J (7.16 ± 0.15, R ⊕), bulk density of 0.65+0.12-0.11 (cgs), and period 18.38818 +0.00085 -0.00084 days. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M∗ = 1.390 ± 0.046 rm M sun, R∗ = 1.888 ± 0.033 Rsun, Teff = 6075 ± 90 rm K, and vsin i = 11.3 ± 0.5 km s-1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems
    corecore