12 research outputs found
A Second-Generation Device for Automated Training and Quantitative Behavior Analyses of Molecularly-Tractable Model Organisms
A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science
Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis
© 2018 The Authors Background: Dupilumab is an IL-4 receptor α mAb inhibiting signaling of IL-4 and IL-13, key drivers of type 2–driven inflammation, as demonstrated by its efficacy in patients with atopic/allergic diseases. Objective: This placebo-controlled, double-blind trial (NCT01979016) evaluated the efficacy, safety, and effects of dupilumab on molecular/cellular lesional and nonlesional skin phenotypes and systemic type 2 biomarkers of patients with moderate-to-severe atopic dermatitis (AD). Methods: Skin biopsy specimens and blood were evaluated from 54 patients randomized 1:1 to weekly subcutaneous doses of 200 mg of dupilumab or placebo for 16 weeks. Results: Dupilumab (vs placebo) significantly improved clinical signs and symptoms of AD, was well tolerated, and progressively shifted the lesional transcriptome toward a nonlesional phenotype (weeks 4–16). Mean improvements in a meta-analysis–derived AD transcriptome (genes differentially expressed between lesional and nonlesional skin) were 68.8% and 110.8% with dupilumab and −10.5% and 55.0% with placebo (weeks 4 and 16, respectively; P \u3c.001). Dupilumab significantly reduced expression of genes involved in type 2 inflammation (IL13, IL31, CCL17, CCL18, and CCL26), epidermal hyperplasia (keratin 16 [K16] and MKi67), T cells, dendritic cells (ICOS, CD11c, and CTLA4), and TH17/TH22 activity (IL17A, IL-22, and S100As) and concurrently increased expression of epidermal differentiation, barrier, and lipid metabolism genes (filaggrin [FLG], loricrin [LOR], claudins, and ELOVL3). Dupilumab reduced lesional epidermal thickness versus placebo (week 4, P =.001; week 16, P =.0002). Improvements in clinical and histologic measures correlated significantly with modulation of gene expression. Dupilumab also significantly suppressed type 2 serum biomarkers, including CCL17, CCL18, periostin, and total and allergen-specific IgEs. Conclusion: Dupilumab-mediated inhibition of IL-4/IL-13 signaling through IL-4 receptor α blockade significantly and progressively improved disease activity, suppressed cellular/molecular cutaneous markers of inflammation and systemic measures of type 2 inflammation, and reversed AD-associated epidermal abnormalities