28 research outputs found

    Cannabinoids reduce melanoma cell viability and do not interfere with commonly used targeted therapy in metastatic melanoma in vivo and in vitro

    Get PDF
    Background: Cannabinoids are mainly used for recreational purposes, but also made their way into oncology, since these substances can be taken to increase appetite in tumour cachexia. Since there are some hints in the literature that cannabinoids might have some anti-cancerous effects, the aim of this study was to study if and how cannabinoids mediate pro-apoptotic effects in metastatic melanoma in vivo and in vitro and its value besides conventional targeted therapy in vivo. Methods: Several melanoma cell lines were treated with different concentrations of cannabinoids, and anti-cancerous efficacy was assessed by proliferation and apoptosis assays. Subsequent pathway analysis was performed using apoptosis, proliferation, flow cytometry and confocal microscopy data. The efficacy of cannabinoids in combination with trametinib was studied in NSG mice in vivo. Results: Cannabinoids reduced cell viability in multiple melanoma cell lines in a dose-dependent way. The effect was mediated by CB1, TRPV1 and PPARα receptors, whereby pharmacological blockade of all three receptors protected from cannabinoid-induced apoptosis. Cannabinoids initiated apoptosis by mitochondrial cytochrome c release with consecutive activation of different caspases. Essentially, cannabinoids significantly decreased tumour growth in vivo and were as potent as the MEK inhibitor trametinib. Conclusions: We could demonstrate that cannabinoids reduce cell viability in several melanoma cell lines, initiate apoptosis via the intrinsic apoptotic pathway by cytochrome c release and caspase activation and do not interfere with commonly used targeted therapy

    MUG Mel3 Cell Lines Reflect Heterogeneity in Melanoma and Represent a Robust Model for Melanoma in Pregnancy

    Get PDF
    Melanomas are aggressive tumors with a high metastatic potential and an increasing incidence rate. They are known for their heterogeneity and propensity to easily develop therapy-resistance. Nowadays they are one of the most common cancers diagnosed during pregnancy. Due to the difficulty in balancing maternal needs and foetal safety, melanoma is challenging to treat. The aim of this study was to provide a potential model system for the study of melanoma in pregnancy and to illustrate melanoma heterogeneity. For this purpose, a pigmented and a non-pigmented section of a lymph node metastasis from a pregnant patient were cultured under different conditions and characterized in detail. All four culture conditions exhibited different phenotypic, genotypic as well as tumorigenic properties, and resulted in four newly established melanoma cell lines. To address treatment issues, especially in pregnant patients, the effect of synthetic human lactoferricin-derived peptides was tested successfully. These new BRAF-mutated MUG Mel3 cell lines represent a valuable model in melanoma heterogeneity and melanoma pregnancy research. Furthermore, treatment with anti-tumor peptides offers an alternative to conventionally used therapeutic options—especially during pregnancy

    Function and Clinical Implications of Long Non-Coding RNAs in Melanoma

    No full text
    Metastatic melanoma is the most deadly type of skin cancer. Despite the success of immunotherapy and targeted agents, the majority of patients experience disease recurrence upon treatment and die due to their disease. Long non-coding RNAs (lncRNAs) are a new subclass of non-protein coding RNAs involved in (epigenetic) regulation of cell growth, invasion, and other important cellular functions. Consequently, recent research activities focused on the discovery of these lncRNAs in a broad spectrum of human diseases, especially cancer. Additional efforts have been undertaken to dissect the underlying molecular mechanisms employed by lncRNAs. In this review, we will summarize the growing evidence of deregulated lncRNA expression in melanoma, which is linked to tumor growth and progression. Moreover, we will highlight specific molecular pathways and modes of action for some well-studied lncRNAs and discuss their potential clinical implications

    Two case reports of rare BRAF mutations in exon 11 and exon 15 with discussion of potential treatment options

    No full text
    BRAF mutations occur in up to 50% of melanomas. Mutations in the BRAF gene directly influence the patient's treatment because several inhibitors are available that only target BRAF mutations. Herein, we describe two cases of patients with metastatic melanomas, each carrying a 'nonstandard' mutation in the BRAF gene: BRAF and BRAF, respectively. The first patient was treated with a MEK inhibitor and the second one with ipilimumab. However, not all BRAF mutations result in increased BRAF kinase activity, and clinical data for 'nonstandard' mutations, such as those described in our case report, are sparse. Therefore, treatment with MEK inhibitors can be helpful in cases where BRAF mutations result in increased activity, whereas immune checkpoint inhibitors might be used in cases where the mutations lead to activity levels below those of the wild type

    MicroRNAs as a tool to aid stratification of colorectal cancer patients and to guide therapy

    No full text
    Colorectal cancer is a common type of malignant disease with high rates of morbidity and mortality. Although treatment options have been expanded over the last years, the mainstay of curative treatment remains surgical removal of the tumor-bearing organ. Systemic treatment options include classic cytotoxic drugs as well as some biological agents. Noncoding RNAs are an evolving field in cancer diagnosis, prognosis and possible treatment. Noncoding miRNAs are small molecules with huge impact on gene expression. They have been a substantial part of cancer research for more than a decade. In this review article, the current knowledge of miRNAs and colorectal cancer diagnosis, prognosis and novel or evolving therapeutic concepts are discussed. Examples of how miRNAs might change the management of the disease will be described. </jats:p
    corecore