3,844 research outputs found

    Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering

    Get PDF
    Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates

    Spin-1/2 J1-J2 model on the body-centered cubic lattice

    Full text link
    Using exact diagonalization (ED) and linear spin wave theory (LSWT) we study the influence of frustration and quantum fluctuations on the magnetic ordering in the ground state of the spin-1/2 J1-J2 Heisenberg antiferromagnet (J1-J2 model) on the body-centered cubic (bcc) lattice. Contrary to the J1-J2 model on the square lattice, we find for the bcc lattice that frustration and quantum fluctuations do not lead to a quantum disordered phase for strong frustration. The results of both approaches (ED, LSWT) suggest a first order transition at J2/J1 ≈\approx 0.7 from the two-sublattice Neel phase at low J2 to a collinear phase at large J2.Comment: 6.1 pages 7 figure

    Can a frustrated spin-cluster model describe the low-temperature physics of NaV_2O_5 ?

    Full text link
    Recent experimental evidence suggest the existence of three distinct V-valence states (V^{+4}, V^{+4.5} and V^{+5}) in the low-temperature phase of NaV_2O_5 in apparent discrepancy with the observed spin-gap. We investigate a novel spin cluster model, consisting of weakly coupled, frustrated four-spin clusters aligned along the crystallographic b-axis that was recently proposed to reconcile these experimental observations. We have studied the phase diagram and the magnon dispersion relation of this model using DMRG, exact diagonalization and a novel cluster-operator theory. We find a spin-gap for all parameter values and two distinct phases, a cluster phase and a Haldane phase. We evaluate the size of the gap and the magnon dispersion and find no parameter regime which would reproduce the experimental results. We conclude that this model is inappropriate for the low-temperature regime of NaV_2O_5

    TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes

    Get PDF
    TIGRFAMs is a collection of protein family definitions built to aid in high-throughput annotation of specific protein functions. Each family is based on a hidden Markov model (HMM), where both cutoff scores and membership in the seed alignment are chosen so that the HMMs can classify numerous proteins according to their specific molecular functions. Most TIGRFAMs models describe ‘equivalog’ families, where both orthology and lateral gene transfer may be part of the evolutionary history, but where a single molecular function has been conserved. The Genome Properties system contains a queriable set of metabolic reconstructions, genome metrics and extractions of information from the scientific literature. Its genome-by-genome assertions of whether or not specific structures, pathways or systems are present provide high-level conceptual descriptions of genomic content. These assertions enable comparative genomics, provide a meaningful biological context to aid in manual annotation, support assignments of Gene Ontology (GO) biological process terms and help validate HMM-based predictions of protein function. The Genome Properties system is particularly useful as a generator of phylogenetic profiles, through which new protein family functions may be discovered. The TIGRFAMs and Genome Properties systems can be accessed at and

    Collective excitations in ferrimagnetic Heisenberg ladders

    Full text link
    We study ground-state properties and the low-lying excitations of Heisenberg spin ladders composed of two ferrimagnetic chains with alternating site spins (S1>S2)(S_1>S_2) by using the bosonic Dyson-Maleev formalism and Lanczos numerical techniques. The emphasis is on properties of the ferrimagnetic phase which is stable for antiferromagnetic interchain couplings J⊄≄0J_{\perp}\geq 0. There are two basic implications of the underlying lattice structure: (i) the spin-wave excitations form folded acoustic and optical branches in the extended Brillouin zone and (ii) the ground state parameters (such as the on-site magnetizations and spin-stiffness constant) show a crossover behavior in the weak-coupling region 0<J⊄<10<J_{\perp}<1. The above peculiarities of the ladder ferrimagnetic state are studied up to second order in the quasiparticle interaction and by a numerical diagonalization of ladders containing up to N=12 rungs. The presented results for the ground-state parameters and the excitation spectrum can be used in studies on the low-temperature thermodynamics of ferrimagnetic ladders.Comment: 9 pages, 9 figure

    Frustrated quantum Heisenberg ferrimagnetic chains

    Full text link
    We study the ground-state properties of weakly frustrated Heisenberg ferrimagnetic chains with nearest and next-nearest neighbor antiferromagnetic exchange interactions and two types of alternating sublattice spins S_1 > S_2, using 1/S spin-wave expansions, density-matrix renormalization group, and exact- diagonalization techniques. It is argued that the zero-point spin fluctuations completely destroy the classical commensurate- incommensurate continuous transition. Instead, the long-range ferrimagnetic state disappears through a discontinuous transition to a singlet state at a larger value of the frustration parameter. In the ferrimagnetic phase we find a disorder point marking the onset of incommensurate real-space short-range spin-spin correlations.Comment: 16 pages (LaTex 2.09), 6 eps figure

    First-order quantum phase transition in the orthogonal-dimer spin chain

    Full text link
    We investigate the low-energy properties of the orthogonal-dimer spin chain characterized by a frustrated dimer-plaquette structure. When the competing antiferromagnetic couplings are varied, the first-order quantum phase transition occurs between the dimer and the plaquette phases, which is accompanied by nontrivial features due to frustration: besides the discontinuity in the lowest excitation gap at the transition point, a sharp level-crossing occurs for the spectrum in the plaquette phase. We further reveal that the plateau in the magnetization curve at 1/4 of the full moment dramatically changes its character in the vicinity of the critical point. It is argued that the first-order phase transition in this system captures some essential properties found in the two-dimensional orthogonal-dimer model proposed for SrCu2(BO3)2\rm SrCu_2(BO_3)_2.Comment: 7 pages, submitted to Phys. Rev.

    Practical solution to the Monte Carlo sign problem: Realistic calculations of 54Fe

    Get PDF
    We present a practical solution to the "sign problem" in the auxiliary field Monte Carlo approach to the nuclear shell model. The method is based on extrapolation from a continuous family of problem-free Hamiltonians. To demonstrate the resultant ability to treat large shell-model problems, we present results for 54Fe in the full fp-shell basis using the Brown-Richter interaction. We find the Gamow-Teller beta^+ strength to be quenched by 58% relative to the single-particle estimate, in better agreement with experiment than previous estimates based on truncated bases.Comment: 11 pages + 2 figures (not included

    Phase diagram of an asymmetric spin ladder

    Full text link
    We investigate an asymmetric zig-zag spin ladder with different exchange integrals on both legs using bosonization and renormalization group. When the leg exchange integrals and frustration both are sufficiently small, renormalization group analysis shows that the Heisenberg critical point flows to an intermediate-coupling fixed point with gapless excitations and a vanishing spin velocity. When they are large, a spin gap opens and a dimer liquid is realized. Here, we find a continuous manifold of Hamiltonians with dimer product ground states, interpolating between the Majumdar-Ghosh and sawtooth spin-chain model.Comment: 4 pages, 2 EPS figures, to be published in PR
    • 

    corecore