79 research outputs found
The influence of online resources on studentâlecturer relationship in higher education: a comparison study
The internet has become a key resource for studentsâ higher education studies due to both its availability and currency. Previously within higher education, lectures, books and course materials were the only sources of information. This change, to more open access to information and more online materials being accessed outside of those provided by lecturers, and indeed institutions, is likely to accelerate and change the way students are learning. This study aims to help institutions understand better the impact of these changes on the studentâlecturer relationship by exploring studentsâ perceptions of their studies in terms of power and studentsâ academic engagement in the classroom. The importance of the internet (online learning resources) to studentsâ achievements, the importance of lecturers and the studentâlecturer relationship have all been widely investigated. However, limited research has been undertaken examining the impact of studentsâ use of the internet on the studentâlecturer relationship, or comparing this across different countries and cultures. To address this, data were collected via semi- structured questionnaires distributed to undergraduate students from three countries: United Kingdom, Saudi Arabia and Kenya. Quantitative data were analysed using a simple statistical analysis approach and qualitative data were analysed using a thematic analysis approach. The results showed that studentsâ use of the internet has improved studentsâ academic self-confidence, academic self-reliance and studentâ lecturer connectedness, but studentsâ use of the internet has increased the gap in the studentâlecturer expert relationship and referent relationship. The impact and rea- sons for this differed between the countries involved in this study
Using role-play to improve studentsâ confidence and perceptions of communication in a simulated volcanic crisis
Traditional teaching of volcanic science typically emphasises scientific
principles and tends to omit the key roles, responsibilities, protocols, and
communication needs that accompany volcanic crises. This chapter
provides a foundation in instructional communication, education, and risk
and crisis communication research that identifies the need for authentic
challenges in higher education to challenge learners and provide
opportunities to practice crisis communication in real-time. We present
an authentic, immersive role-play called the Volcanic Hazards Simulation
that is an example of a teaching resource designed to match professional
competencies. The role-play engages students in volcanic crisis concepts
while simultaneously improving their confidence and perceptions of
communicating science. During the role-play, students assume authentic
roles and responsibilities of professionals and communicate through
interdisciplinary team discussions, media releases, and press conferences.
We characterised and measured the studentsâ confidence and perceptions
of volcanic crisis communication using a mixed methods research design
to determine if the role-play was effective at improving these qualities.
Results showed that there was a statistically significant improvement in
both communication confidence and perceptions of science communication.
The exercise was most effective in transforming low-confidence and
low-perception students, with some negative changes measured for our
higher-learners. Additionally, students reported a comprehensive and
diverse set of best practices but focussed primarily on the mechanics of
science communication delivery. This curriculum is a successful example
of how to improve studentsâ communication confidence and perceptions
Communication practices in the US and Syria
This study highlights Syrian communication practices using comparative tests with the United States communication as a baseline. Additionally, theoretical findings on individualism and collectivism theory are extended to include findings from Syria. Multivariate Analysis of Covariance was used to test cultureâs effect in demographically similar (in age, SES, and education) student convenience samples, with the covariate communication adaptability, on dependent variables: empathy, social confirmation, social composure, friendships, non-verbal immediacy, social self-efficacy, and general self-efficacy. Results indicated that Syrians possess more empathy, social confirmation, and perceived general self-efficacy in comparison to U.S. citizens who have greater social composure, friendships, non-verbal immediacy and social self-efficacy. These results indicate that Syrians have the strength of self-efficacy to succeed in intercultural relationships while U.S. Americans have the assets of warmth and sociability to enable successful interactions with Syrian
Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A
Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia
Training in crisis communication and volcanic eruption forecasting:Design and evaluation of an authentic role-play simulation
We present an interactive, immersive, authentic role-play simulation designed to teach tertiary geoscience students
in New Zealand to forecast and mitigate a volcanic crisis. Half of the participating group (i.e., the Geoscience Team)
focuses on interpreting real volcano monitoring data (e.g., seismographs, gas output etc.) while the other half of the
group (i.e., the Emergency Management Team) forecasts and manages likely impacts, and communicates emergency
response decisions and advice to local communities. These authentic learning experiences were aimed at enhancing
upper-year undergraduate studentsâ transferable and geologic reasoning skills. An important goal of the simulation was
specifically to improve studentsâ science communication through interdisciplinary team discussions, jointly prepared,
and delivered media releases, and real-time, high-pressure, press conferences.
By playing roles, students experienced the specific responsibilities of a professional within authentic organisational
structures. A qualitative, design-based educational research study was carried out to assess the overall student experience
and self-reported learning of skills. A pilot and four subsequent iterations were investigated.
Results from this study indicate that students found these role-plays to be a highly challenging and engaging learning
experience and reported improved skills. Data from classroom observations and interviews indicate that the students
valued the authenticity and challenging nature of the role-play although personal experiences and team dynamics
(within, and between the teams) varied depending on the studentsâ background, preparedness, and personality.
During early iterations, observation and interviews from students and instructors indicate that some of the goals of the
simulation were not fully achieved due to: A) lack of preparedness, B) insufficient time to respond appropriately, C)
appropriateness of roles and team structure, and D) poor communication skills. Small modifications to the design of
Iterations 3 and 4 showed an overall improvement in the studentsâ skills and goals being reached.
A communication skills instrument (SPCC) was used to measure self-reported pre- and post- communication competence
in the last two iterations. Results showed that this instrument recorded positive shifts in all categories of self-perceived
abilities, the largest shifts seen in students who participated in press conferences. Future research will be aimed
at adapting this curricula to new volcanic and earthquake scenarios
Somatic retrotransposition alters the genetic landscape of the human brain
Retrotransposons are mobile genetic elements that use a germline 'copy-and-paste' mechanism to spread throughout metazoan genomes. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease. Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells, excluding early embryo development and some malignancies. Recent reports of L1 expression and copy number variation in the human brain suggest that L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germline mutations, as well as 7,743 putative somatic L1 insertions, in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 somatic Alu insertions and 1,350 SVA insertions. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes
- âŠ