366 research outputs found
Mucosal Application of gp140 Encoding DNA Polyplexes to Different Tissues Results in Altered Immunological Outcomes in Mice
Increasing evidence suggests that mucosally targeted vaccines will enhance local humoral and cellular responses whilst still eliciting systemic immunity. We therefore investigated the capacity of nasal, sublingual or vaginal delivery of DNA-PEI polyplexes to prime immune responses prior to mucosal protein boost vaccination. Using a plasmid expressing the model antigen HIV CN54gp140 we show that each of these mucosal surfaces were permissive for DNA priming and production of antigen-specific antibody responses. The elicitation of systemic immune responses using nasally delivered polyplexed DNA followed by recombinant protein boost vaccination was equivalent to a systemic prime-boost regimen, but the mucosally applied modality had the advantage in that significant levels of antigen-specific IgA were detected in vaginal mucosal secretions. Moreover, mucosal vaccination elicited both local and systemic antigen-specific IgG(+) and IgA(+) antibody secreting cells. Finally, using an Influenza challenge model we found that a nasal or sublingual, but not vaginal, DNA prime/protein boost regimen protected against infectious challenge. These data demonstrate that mucosally applied plasmid DNA complexed to PEI followed by a mucosal protein boost generates sufficient antigen-specific humoral antibody production to protect from mucosal viral challenge
Assessing the causal role of epigenetic clocks in the development of multiple cancers: a Mendelian randomization study
Background: Epigenetic clocks have been associated with cancer risk in several observational studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a non-causal biomarker. Methods: We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach. Results: Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers. Conclusions: GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results. Funding: FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΞ Ξ£ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol
Recommended from our members
Bacterial variability in the mammalian gut captured by a single-cell synthetic oscillator
Funder: Harvard Medical
School; doi: https://doi.org/10.13039/100006691Funder: Wyss Institute for Biologically Inspired EngineeringAbstract: Synthetic gene oscillators have the potential to control timed functions and periodic gene expression in engineered cells. Such oscillators have been refined in bacteria in vitro, however, these systems have lacked the robustness and precision necessary for applications in complex in vivo environments, such as the mammalian gut. Here, we demonstrate the implementation of a synthetic oscillator capable of keeping robust time in the mouse gut over periods of days. The oscillations provide a marker of bacterial growth at a single-cell level enabling quantification of bacterial dynamics in response to inflammation and underlying variations in the gut microbiota. Our work directly detects increased bacterial growth heterogeneity during disease and differences between spatial niches in the gut, demonstrating the deployment of a precise engineered genetic oscillator in real-life settings
A long view of liberal peace and its crisis
The βcrisisβ of liberal peace has generated considerable debate in International Relations. However, analysis is inhibited by a shared set of spatial, cultural and temporal assumptions that rest on and reproduce a problematic separation between self-evident βliberalβ and βnon-liberalβ worlds, and locates the crisis in presentist terms of the latterβs resistance to the formerβs expansion. By contrast, this article argues that efforts to advance liberal rule have always been interwoven with processes of alternative order-making, and in this way are actively integral, not external, to the generation of the subjectivities, contestations, violence and rival social orders that are then apprehended as self-evident obstacles and threats to liberal peace and as characteristic of its periphery. Making visible these intimate relations of co-constitution elided by representations of liberal peace and its crisis requires a long view and an analytical frame that encompasses both liberalism and its others in the world. The argument is developed using a Foucauldian governmentality framework and illustrated with reference to Sri Lanka
The influence of online resources on studentβlecturer relationship in higher education: a comparison study
The internet has become a key resource for studentsβ higher education studies due to both its availability and currency. Previously within higher education, lectures, books and course materials were the only sources of information. This change, to more open access to information and more online materials being accessed outside of those provided by lecturers, and indeed institutions, is likely to accelerate and change the way students are learning. This study aims to help institutions understand better the impact of these changes on the studentβlecturer relationship by exploring studentsβ perceptions of their studies in terms of power and studentsβ academic engagement in the classroom. The importance of the internet (online learning resources) to studentsβ achievements, the importance of lecturers and the studentβlecturer relationship have all been widely investigated. However, limited research has been undertaken examining the impact of studentsβ use of the internet on the studentβlecturer relationship, or comparing this across different countries and cultures. To address this, data were collected via semi- structured questionnaires distributed to undergraduate students from three countries: United Kingdom, Saudi Arabia and Kenya. Quantitative data were analysed using a simple statistical analysis approach and qualitative data were analysed using a thematic analysis approach. The results showed that studentsβ use of the internet has improved studentsβ academic self-confidence, academic self-reliance and studentβ lecturer connectedness, but studentsβ use of the internet has increased the gap in the studentβlecturer expert relationship and referent relationship. The impact and rea- sons for this differed between the countries involved in this study
Democratic population decisions result in robust policy-gradient learning: A parametric study with GPU simulations
High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this direction may be worthwhile. In this work, we use GPU programming to simulate a two-layer network of Integrate-and-Fire neurons with varying degrees of recurrent connectivity and investigate its ability to learn a simplified navigation task using a policy-gradient learning rule stemming from Reinforcement Learning. The purpose of this paper is twofold. First, we want to support the use of GPUs in the field of Computational Neuroscience. Second, using GPU computing power, we investigate the conditions under which the said architecture and learning rule demonstrate best performance. Our work indicates that networks featuring strong Mexican-Hat-shaped recurrent connections in the top layer, where decision making is governed by the formation of a stable activity bump in the neural population (a "non-democratic" mechanism), achieve mediocre learning results at best. In absence of recurrent connections, where all neurons "vote" independently ("democratic") for a decision via population vector readout, the task is generally learned better and more robustly. Our study would have been extremely difficult on a desktop computer without the use of GPU programming. We present the routines developed for this purpose and show that a speed improvement of 5x up to 42x is provided versus optimised Python code. The higher speed is achieved when we exploit the parallelism of the GPU in the search of learning parameters. This suggests that efficient GPU programming can significantly reduce the time needed for simulating networks of spiking neurons, particularly when multiple parameter configurations are investigated. Β© 2011 Richmond et al
E-cadherin and Ξ±-, Ξ²- and Ξ³-catenin expression in prostate cancers: correlation with tumour invasion
The E-cadherinβcatenin complex plays an important role in establishing and maintaining intercellular connections and morphogenesis and reduced expression of its constituent molecules is associated with invasion and metastasis. In the present study, we examined E-cadherin and Ξ±-, Ξ²- and Ξ³-catenin levels in tumour tissues obtained by radical prostatectomy in order to investigate the relationship with histopathological tumour invasion. Immunohistochemical findings for 45 prostate cancer specimens demonstrated aberrant expression of each molecule to be associated with dedifferentiation and, in addition, alteration of staining patterns for the three types of catenin was significantly correlated with capsular but not lymphatic or vascular invasion. The data thus suggest that three types of catenin may be useful predictive markers for biological aggressiveness of prostate cancer. Β© 1999 Cancer Research Campaig
The Transient Receptor Potential Ion Channel TRPV6 Is Expressed at Low Levels in Osteoblasts and Has Little Role in Osteoblast Calcium Uptake
Background: TRPV6 ion channels are key mediators of regulated transepithelial absorption of Ca2+ within the small intestine. Trpv6-/- mice were reported to have lower bone density than wild-type littermates and significant disturbances in calcium homeostasis that suggested a role for TRPV6 in osteoblasts during bone formation and mineralization. TRPV6 and molecules related to transepithelial Ca2+ transport have been reported to be expressed at high levels in human and mouse osteoblasts.
Results: Transmembrane ion currents in whole cell patch clamped SaOS-2 osteoblasts did not show sensitivity to ruthenium red, an inhibitor of TRPV5/6 ion channels, and 45Ca uptake was not significantly affected by ruthenium red in either SaOS-2 (Pβ=β0.77) or TE-85 (Pβ=β0.69) osteoblastic cells. In contrast, ion currents and 45Ca uptake were both significantly affected in a human bronchial epithelial cell line known to express TRPV6. TRPV6 was expressed at lower levels in osteoblastic cells than has been reported in some literature. In SaOS-2 TRPV6 mRNA was below the assay detection limit; in TE-85 TRPV6 mRNA was detected at 6.90Β±1.9 Γ 10β5 relative to B2M. In contrast, TRPV6 was detected at 7.7Β±3.0 Γ 10β2 and 2.38Β±0.28 Γ 10β4 the level of B2M in human carcinoma-derived cell lines LNCaP and CaCO-2 respectively. In murine primary calvarial osteoblasts TRPV6 was detected at 3.80Β±0.24 Γ 10β5 relative to GAPDH, in contrast with 4.3Β±1.5 Γ 10β2 relative to GAPDH in murine duodenum. By immunohistochemistry, TRPV6 was expressed mainly in myleocytic cells of the murine bone marrow and was observed only at low levels in murine osteoblasts, osteocytes or growth plate cartilage.
Conclusions: TRPV6 is expressed only at low levels in osteoblasts and plays little functional role in osteoblastic calcium uptake
Caenorhabditis elegans behavioral genetics: where are the knobs?
Thousands of behavioral mutants of Caenorhabditis elegans have been studied. I suggest a set of criteria by which some genes important in the evolution of behavior might be recognized, and identify neuropeptide signaling pathways as candidates
- β¦