16,837 research outputs found
Divide-and-Conquer Method for Instanton Rate Theory
Ring-polymer instanton theory has been developed to simulate the quantum
dynamics of molecular systems at low temperatures. Chemical reaction rates can
be obtained by locating the dominant tunneling pathway and analyzing
fluctuations around it. In the standard method, calculating the fluctuation
terms involves the diagonalization of a large matrix, which can be unfeasible
for large systems with a high number of ring-polymer beads. Here we present a
method for computing the instanton fluctuations with a large reduction in
computational scaling. This method is applied to three reactions described by
fitted, analytic and on-the-fly ab initio potential-energy surfaces and is
shown to be numerically stable for the calculation of thermal reaction rates
even at very low temperature
Semiclassical instanton formulation of Marcus-Levich-Jortner theory
Marcus-Levich-Jortner (MLJ) theory is one of the most commonly used methods
for including nuclear quantum effects into the calculation of electron-transfer
rates and for interpreting experimental data. It divides the molecular problem
into a subsystem treated quantum-mechanically by Fermi's golden rule and a
solvent bath treated by classical Marcus theory. As an extension of this idea,
we here present a "reduced" semiclassical instanton theory, which is a
multiscale method for simulating quantum tunnelling of the subsystem in
molecular detail in the presence of a harmonic bath. We demonstrate that
instanton theory is typically significantly more accurate than the cumulant
expansion or the semiclassical Franck-Condon sum, which can give
orders-of-magnitude errors and in general do not obey detailed balance. As
opposed to MLJ theory, which is based on wavefunctions, instanton theory is
based on path integrals and thus does not require solutions of the
Schr\"odinger equation, nor even global knowledge of the ground- and
excited-state potentials within the subsystem. It can thus be efficiently
applied to complex, anharmonic multidimensional subsystems without making
further approximations. In addition to predicting accurate rates, instanton
theory gives a high level of insight into the reaction mechanism by locating
the dominant tunnelling pathway as well as providing information on the
reactant and product vibrational states involved in the reaction and the
activation energy in the bath similarly to what would be found with MLJ theory.Comment: 21 pages, 4 figure
Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems
We propose a new quantum transition-state theory for calculating Fermi's
golden-rule rates in complex multidimensional systems. This method is able to
account for the nuclear quantum effects of delocalization, zero-point energy
and tunnelling in an electron-transfer reaction. It is related to instanton
theory but can be computed by path-integral sampling and is thus applicable to
treat molecular reactions in solution. A constraint functional based on energy
conservation is introduced which ensures that the dominant paths contributing
to the reaction rate are sampled. We prove that the theory gives exact results
for a system of crossed linear potentials and also the correct classical limit
for any system. In numerical tests, the new method is also seen to be accurate
for anharmonic systems, and even gives good predictions for rates in the Marcus
inverted regime.Comment: 18 pages and 6 figure
Recommended from our members
High-speed multi-dimensional relative navigation for uncooperative space objects
This work proposes a high-speed Light Detection and Ranging (LIDAR) based navigation architecture that is appropriate for uncooperative relative space navigation applications. In contrast to current solutions that exploit 3D LIDAR data, our architecture transforms the odometry problem from the 3D space into multiple 2.5D ones and completes the odometry problem by utilizing a recursive filtering scheme. Trials evaluate several current state-of-the-art 2D keypoint detection and local feature description methods as well as recursive filtering techniques on a number of simulated but credible scenarios that involve a satellite model developed by Thales Alenia Space (France). Most appealing performance is attained by the 2D keypoint detector Good Features to Track (GFFT) combined with the feature descriptor KAZE, that are further combined with either the Hβ or the Kalman recursive filter. Experimental results demonstrate that compared to current algorithms, the GFTT/KAZE combination is highly appealing affording one order of magnitude more accurate odometry and a very low processing burden, which depending on the competitor method, may exceed one order of magnitude faster computation
Elucidating the NuclearQuantum Dynamics of Intramolecular Double Hydrogen Transfer in Porphycene
We address the double hydrogen transfer (DHT) dynamics of the porphycene
molecule: A complex paradigmatic system where the making and breaking of
H-bonds in a highly anharmonic potential energy surface requires a quantum
mechanical treatment not only of the electrons, but also of the nuclei. We
combine density-functional theory calculations, employing hybrid functionals
and van der Waals corrections, with recently proposed and optimized
path-integral ring-polymer methods for the approximation of quantum vibrational
spectra and reaction rates. Our full-dimensional ring-polymer instanton
simulations show that below 100 K the concerted DHT tunneling pathway
dominates, but between 100 K and 300 K there is a competition between concerted
and stepwise pathways when nuclear quantum effects are included. We obtain
ground-state reaction rates of at 150 K
and at 100 K, in good agreement with
experiment. We also reproduce the puzzling N-H stretching band of porphycene
with very good accuracy from thermostatted ring-polymer molecular dynamics
simulations. The position and lineshape of this peak, centered at around 2600
cm and spanning 750 cm, stems from a combination of very strong
H-bonds, the coupling to low-frequency modes, and the access to -like
isomeric conformations, which cannot be appropriately captured with
classical-nuclei dynamics. These results verify the appropriateness of our
general theoretical approach and provide a framework for a deeper physical
understanding of hydrogen transfer dynamics in complex systems
The relationship between knowledge of current news and preference for social studies on a fifth-grade level
Thesis (Ed.M.)--Boston Universit
British History for American Students
"The basis of this work is the author's belief that the primary aim of historical study ought to be the acquisition of understanding rather than mere information about unconnected facts. The book is therefore offered as a suggestive interpretation to stimulate thought rather than as a narrative of British history complete in itself.
- β¦