23,900 research outputs found
Leech Parasitism of the Gulf Coast Box Turtle, Terrapene carolina major (Testudines:Emydidae) in Mississippi, USA
Ten leeches were collected from a Gulf Coast box turtle, Terrapene carolina major, found crossing a road in Gulfport, Harrison County, Mississippi, USA. Eight of the leeches were identified as Placobdella multilineata and 2 were identified as Helobdella europaea. This represents the second vouchered report of leeches from a box turtle. Helobdella europaea is reported for the first time associated with a turtle and for the second time from the New World
The Nature of the H2-Emitting Gas in the Crab Nebula
Understanding how molecules and dust might have formed within a rapidly
expanding young supernova remnant is important because of the obvious
application to vigorous supernova activity at very high redshift. In previous
papers, we found that the H2 emission is often quite strong, correlates with
optical low-ionization emission lines, and has a surprisingly high excitation
temperature. Here we study Knot 51, a representative, bright example, for which
we have available long slit optical and NIR spectra covering emission lines
from ionized, neutral, and molecular gas, as well as HST visible and SOAR
Telescope NIR narrow-band images. We present a series of CLOUDY simulations to
probe the excitation mechanisms, formation processes and dust content in
environments that can produce the observed H2 emission. We do not try for an
exact match between model and observations given Knot 51's ambiguous geometry.
Rather, we aim to explain how the bright H2 emission lines can be formed from
within the volume of Knot 51 that also produces the observed optical emission
from ionized and neutral gas. Our models that are powered only by the Crab's
synchrotron radiation are ruled out because they cannot reproduce the strong,
thermal H2 emission. The simulations that come closest to fitting the
observations have the core of Knot 51 almost entirely atomic with the H2
emission coming from just a trace molecular component, and in which there is
extra heating. In this unusual environment, H2 forms primarily by associative
detachment rather than grain catalysis. In this picture, the 55 H2-emitting
cores that we have previously catalogued in the Crab have a total mass of about
0.1 M_sun, which is about 5% of the total mass of the system of filaments. We
also explore the effect of varying the dust abundance. We discuss possible
future observations that could further elucidate the nature of these H2 knots.Comment: 51 pages, 15 figures, accepted for publication in MNRAS, revised
Figure 12 results unchange
Rethinking professional practice: the logic of competition and the crisis of identity in housing practice
The relationship between professionalism, education and housing practice has become increasingly strained following the introduction of austerity measures and welfare reforms across a range of countries. Focusing on the development of UK housing practice, this article considers how notions of professionalism are being reshaped within the context of welfare retrenchment and how emerging tensions have both affected the identity of housing professionals and impacted on the delivery of training and education programmes. The article analyses the changing knowledge and skills valued in contemporary housing practice and considers how the sector has responded to the challenges of austerity. The central argument is that a dominant logic of competition has culminated in a crisis of identity for the sector. Although the focus of the article is on UK housing practice, the processes identified have a wider relevance for the analysis of housing and welfare delivery in developed economies
All Coronal Loops are the Same: Evidence to the Contrary
The 1998 April 20 spectral line data from the Coronal Diagnostics
Spectrometer (CDS) on the {\it Solar and Heliospheric Observatory} (\SOHO)
shows a coronal loop on the solar limb. Our original analysis of these data
showed that the plasma was multi-thermal, both along the length of the loop and
along the line of sight. However, more recent results by other authors indicate
that background subtraction might change these conclusions, so we consider the
effect of background subtraction on our analysis. We show Emission Measure (EM)
Loci plots of three representative pixels: loop apex, upper leg, and lower leg.
Comparisons of the original and background-subtracted intensities show that the
EM Loci are more tightly clustered after background subtraction, but that the
plasma is still not well represented by an isothermal model. Our results taken
together with those of other authors indicate that a variety of temperature
structures may be present within loops.Comment: Accepted for publication in ApJ Letter
Magnetic Helicity Conservation and Astrophysical Dynamos
We construct a magnetic helicity conserving dynamo theory which incorporates
a calculated magnetic helicity current. In this model the fluid helicity plays
a small role in large scale magnetic field generation. Instead, the dynamo
process is dominated by a new quantity, derived from asymmetries in the second
derivative of the velocity correlation function, closely related to the `twist
and fold' dynamo model. The turbulent damping term is, as expected, almost
unchanged. Numerical simulations with a spatially constant fluid helicity and
vanishing resistivity are not expected to generate large scale fields in
equipartition with the turbulent energy density. The prospects for driving a
fast dynamo under these circumstances are uncertain, but if it is possible,
then the field must be largely force-free. On the other hand, there is an
efficient analog to the dynamo. Systems whose turbulence is
driven by some anisotropic local instability in a shearing flow, like real
stars and accretion disks, and some computer simulations, may successfully
drive the generation of strong large scale magnetic fields, provided that
. We show that this
criterion is usually satisfied. Such dynamos will include a persistent,
spatially coherent vertical magnetic helicity current with the same sign as
, that is, positive for an accretion disk and negative for
the Sun. We comment on the role of random magnetic helicity currents in storing
turbulent energy in a disordered magnetic field, which will generate an
equipartition, disordered field in a turbulent medium, and also a declining
long wavelength tail to the power spectrum. As a result, calculations of the
galactic `seed' field are largely irrelevant.Comment: 28 pages, accepted by The Astrophysical Journa
Finite Density QCD in the Chiral Limit
We present the first results of an exact simulation of full QCD at finite
density in the chiral limit. We have used a MFA (Microcanonical Fermionic
Average) inspired approach for the reconstruction of the Grand Canonical
Partition Function of the theory; using the fugacity expansion of the fermionic
determinant we are able to move continuously in the () plane with
.Comment: 3 pages, LaTeX, 3 figures, uses espcrc2.sty, psfig. Talk presented by
A. Galante at Lattice 97. Correction of some reference
- …