171 research outputs found
Kanji Acquisition Techniques for L1 and L2 Japanese Studies
Kanji are ideograms, a morphographic system borrowed from the Chinese language and used in Japanese writing. 2,136 kanji are used in the average Japanese newspaper, required for academic certification and for expat job placement. A qualitative study was conducted to observe the optimum methods to learn and acquire kanji. Japanese native speakers who were educated by the Japanese school system grades 1 through 12 are classified as L1 or first language speakers. American students, L2 or second language speakers, must have been educated in the American education system grades 1-12. L1 speakers were students attending Central Washington University (CWU) study abroad programs and L2 students were Japanese Major or Minor degree seeking CWU students. A comparison between L1 and L2 speakers was observed by interviewing 10 students from each group on acquisition strategies. Both groups of participants were asked what methods and techniques aided them in passing standardized tests for Japanese kanji. Students described drilling repetition of kanji ideograms for memorization combined with reading for real time comprehension as the best method for kanji retention. Current study results show that frequent reading of Japanese kanji and understanding of the semantic and phonetic radicals that makeup each ideogram are the best ways to strategically acquire kanji
Fostering Community Through Creative Placemaking
This project involved a creative placemaking event hosted on the Laurier Brantford campus in Brantford, ON. The purpose of the event was to engage students and residents in the creative placemaking process, and measure how this engagement could lead to an increased sense of community and belonging. Data collection for this project included participant observation, surveys, photos, and the signs created by participants. Through the data collected at the event, it was concluded that engaging in creative placemaking did increase sense of belonging among participants, and respondents cited mental health benefits as well
Industrial Brush Coiler Attachment
Problem Statement: Company initially desired a new machine that would be able to produce external coiled brushes that would help in increasing revenue and project opportunities. The design has shifted to making an attachment to the existing equipment that would help in this effort instead of developing a completely new unit.
Rationale: Sealeze sees this as an opportunity of increasing revenue and also taking on the effort of making externally coiled brushes more efficiently. If successful, more clients can be taken in and it would make Sealeze a more versatile company.
Approach: The main approach revolved around weekly meetings with Sealeze. E-mail was utilized daily in order to make sure that the desire of the company were met. There were at least three different iterations to the design until one was settled upon. Main design tool used was SolidWorks and the design model was shown to the company frequently.
Interim Results and Conclusions: The main problems that were of concern revolved around the amount of force needed to bend the brush and in a circular fashion. Calculations were done to insure that the brush would be bent with the right amount of force when also taking into consideration the motor driven components that were guiding the brush.
Anticipated Results and Conclusions: According to the calculations, it is expected that the brush will not buckle while the machine is running and will be able to formed into the desired spiral.https://scholarscompass.vcu.edu/capstone/1059/thumbnail.jp
Cortical Activity Measured with Low-Intensity Fatiguing Contractions of the Quadriceps Muscle Group
Modulation of force production required during exercise is regulated from various mechanisms in the central and peripheral nervous system. Fatigue is influenced by various mechanics that may hinder the ability to continuously sustain force production. The neural activation patterns of these systems can be recorded as electrical impulses using several non-invasive techniques. The ability to examine these during fatiguing exercise has provided further insight into activation patterns in the central nervous system (i.e., motor and pre-motor cortex) during sustained muscle contractions. Electroencephalography (EEG) has been recently utilized to examine changes associated with central fatigue, but limited advancements in technology for neuromuscular fatigue has inhibited progression in this area of research. PURPOSE:The purpose of this study is to discover the effects of low-intensity muscular fatigue on central mechanisms. METHODS:Following 3 Maximal Voluntary Contractions (MVCs), four lower-body resistance trained males (23yrs.±2, ht.176cm ±6., wt. 89kg ±16.) performed 60 second submaximal (30% MVC) isometric ramp contraction of the knee extension exercise. Knee extensions were performed on a custom-built seat using an S-beam load-cell to measure isometric force production of the quadriceps muscle group. During the fatiguing contractions, participants were encouraged to perform as many trapezoidal ramp contractions (i.e., 30%) as possible, until they could no longer sustain the required force production. Fatigue was established when the participant could no longer maintain the contraction force within 10% for no less than 3 seconds during the isometric hold.Cortical activity was recorded with a 24-electrode electroencephalogram (EEG) soft cap. Once EEG signals were referenced, bandpass filtered, and cleaned, gamma and beta frequency band data and topographic maps were computed for electrodes over the cerebral cortex (C3, Cz, and C4). Two separate repeated measures ANOVAs were used to compare the band’s during the first 3 seconds of the force plateau of the pre and post contractions.RESULTS:There were no significant differences over time in any of the electrodes/bands (p\u3e .05). DISCUSSION:These data indicate that low-intensity muscular fatigue is not mediated by central mechanisms in the C3, C4, Cz electrode spaces in the higher frequency bands (beta and gamma). Future research will examine other central mechanisms that underlie the neural circuit involved in muscular fatigue
Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson's disease.
ObjectiveTo understand the safety, putaminal coverage, and enzyme expression of adeno-associated viral vector serotype-2 encoding the complementary DNA for the enzyme, aromatic L-amino acid decarboxylase (VY-AADC01), delivered using novel intraoperative monitoring to optimize delivery.MethodsFifteen subjects (three cohorts of 5) with moderately advanced Parkinson's disease and medically refractory motor fluctuations received VY-AADC01 bilaterally coadministered with gadoteridol to the putamen using intraoperative magnetic resonance imaging (MRI) guidance to visualize the anatomic spread of the infusate and calculate coverage. Cohort 1 received 8.3 × 1011 vg/ml and ≤450 μl per putamen (total dose, ≤7.5 × 1011 vg); cohort 2 received the same concentration (8.3 × 1011 vg/ml) and ≤900 μl per putamen (total dose, ≤1.5 × 1012 vg); and cohort 3 received 2.6 × 1012 vg/ml and ≤900 μl per putamen (total dose, ≤4.7 × 1012 vg). (18)F-fluoro-L-dihydroxyphenylalanine positron emission tomography (PET) at baseline and 6 months postprocedure assessed enzyme activity; standard assessments measured clinical outcomes.ResultsMRI-guided administration of ascending VY-AADC01 doses resulted in putaminal coverage of 21% (cohort 1), 34% (cohort 2), and 42% (cohort 3). Cohorts 1, 2, and 3 showed corresponding increases in enzyme activity assessed by PET of 13%, 56%, and 79%, and reductions in antiparkinsonian medication of -15%, -33%, and -42%, respectively, at 6 months. At 12 months, there were dose-related improvements in clinical outcomes, including increases in patient-reported ON-time without troublesome dyskinesia (1.6, 3.3, and 1.5 hours, respectively) and quality of life.InterpretationNovel intraoperative monitoring of administration facilitated targeted delivery of VY-AADC01 in this phase 1 study, which was well tolerated. Increases in enzyme expression and clinical improvements were dose dependent. ClinicalTrials.gov Identifier: NCT01973543 Ann Neurol 2019;85:704-714
A Qualitative Exploration of the Built Environment as a Key Mechanism of Safety and Social Cohesion for Youth in High-Violence Communities
The characteristics of a neighborhood’s built environment may influence health-promoting behaviors, interactions between neighbors, and perceptions of safety. Although some research has reported on how youth in high-violence communities navigate danger, less work has investigated how these youth perceive the built environment, their desires for these spaces, and how these desires relate to their conceptions of safety and perceptions of other residents. To fill this gap, this study used focus group data from 51 youth ages 13–24 living in New Orleans, Louisiana. Four themes were developed using reflexive thematic analysis: community violence is distressing and disruptive, youth use and want to enjoy their neighborhood, systemic failure contributes to negative outcomes, and resources and cooperation create safety. This analysis indicates that young people desire to interact with the built environment despite the threat of community violence. They further identified built environment assets that facilitate socialization and recreation, such as local parks, and social assets in the form of cooperation and neighbor-led civic engagement initiatives. In addition, the youth participants demonstrated awareness of structural inequities that influence neighborhood health and violence-related outcomes. This study contributes to efforts to understand how youth with high levels of community violence exposure understand and interact with the built and social environments
An immortalised mesenchymal stem cell line maintains mechano-responsive behaviour and can be used as a reporter of substrate stiffness
The mechanical environment can influence cell behaviour, including changes to transcriptional and proteomic regulation, morphology and, in the case of stem cells, commitment to lineage. However, current tools for characterizing substrates’ mechanical properties, such as atomic force microscopy (AFM), often do not fully recapitulate the length and time scales over which cells ‘feel’ substrates. Here, we show that an immortalised, clonal line of human mesenchymal stem cells (MSCs) maintains the responsiveness to substrate mechanics observed in primary cells, and can be used as a reporter of stiffness. MSCs were cultured on soft and stiff polyacrylamide hydrogels. In both primary and immortalised MSCs, stiffer substrates promoted increased cell spreading, expression of lamin-A/C and translocation of mechano-sensitive proteins YAP1 and MKL1 to the nucleus. Stiffness was also found to regulate transcriptional markers of lineage. A GFP-YAP/RFP-H2B reporter construct was designed and virally delivered to the immortalised MSCs for in situ detection of substrate stiffness. MSCs with stable expression of the reporter showed GFP-YAP to be colocalised with nuclear RFP-H2B on stiff substrates, enabling development of a cellular reporter of substrate stiffness. This will facilitate mechanical characterisation of new materials developed for applications in tissue engineering and regenerative medicine
A case of pure apraxia of speech after left hemisphere stroke: behavioral findings and neural correlates
IntroductionApraxia of speech (AOS) is a motor speech disorder impairing the coordination of complex articulatory movements needed to produce speech. AOS typically co-occurs with a non-fluent aphasia, or language disorder, making it challenging to determine the specific brain structures that cause AOS. Cases of pure AOS without aphasia are rare but offer the best window into the neural correlates that support articulatory planning. The goal of the current study was to explore patterns of apraxic speech errors and their underlying neural correlates in a case of pure AOS.MethodsA 67-year-old right-handed man presented with severe AOS resulting from a fronto-insular lesion caused by an ischemic stroke. The participant’s speech and language were evaluated at 1-, 3- and 12-months post-onset. High resolution structural MRI, including diffusion weighted imaging, was acquired at 12 months post-onset.ResultsAt the first assessment, the participant made minor errors on the Comprehensive Aphasia Test, demonstrating mild deficits in writing, auditory comprehension, and repetition. By the second assessment, he no longer had aphasia. On the Motor Speech Evaluation, the severity of his AOS was initially rated as 5 (out of 7) and improved to a score of 4 by the second visit, likely due to training by his SLP at the time to slow his speech. Structural MRI data showed a fronto-insular lesion encompassing the superior precentral gyrus of the insula and portions of the inferior and middle frontal gyri and precentral gyrus. Tractography derived from diffusion MRI showed partial damage to the frontal aslant tract and arcuate fasciculus along the white matter projections to the insula.DiscussionThis pure case of severe AOS without aphasia affords a unique window into the behavioral and neural mechanisms of this motor speech disorder. The current findings support previous observations that AOS and aphasia are dissociable and confirm a role for the precentral gyrus of the insula and BA44, as well as underlying white matter in supporting the coordination of complex articulatory movements. Additionally, other regions including the precentral gyrus, Broca’s area, and Area 55b are discussed regarding their potential role in successful speech production
Maintenance of complex I and its supercomplexes by NDUF-11 is essential for mitochondrial structure, function and health
Mitochondrial supercomplexes form around a conserved core of monomeric complex I and dimeric complex III; wherein a subunit of the former, NDUFA11, is conspicuously situated at the interface. We identified nduf-11 (B0491.5) as encoding the Caenorhabditis elegans homologue of NDUFA11. Animals homozygous for a CRISPR-Cas9-generated knockout allele of nduf-11 arrested at the second larval (L2) development stage. Reducing (but not eliminating) expression using RNAi allowed development to adulthood, enabling characterisation of the consequences: destabilisation of complex I and its supercomplexes and perturbation of respiratory function. The loss of NADH dehydrogenase activity was compensated by enhanced complex II activity, with the potential for detrimental reactive oxygen species (ROS) production. Cryo-electron tomography highlighted aberrant morphology of cristae and widening of both cristae junctions and the intermembrane space. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development presumably arises due to its involvement in complex I and supercomplex maintenance. This highlights the importance of respiratory complex integrity for health and the potential for its perturbation to cause mitochondrial disease. This article has an associated First Person interview with Amber Knapp-Wilson, joint first author of the paper
Maintenance of complex I and its supercomplexes by NDUF-11 is essential for mitochondrial structure, function and health
Mitochondrial supercomplexes form around a conserved core of monomeric complex I and dimeric complex III; wherein a subunit of the former, NDUFA11, is conspicuously situated at the interface. We identified nduf-11 (B0491.5) as encoding the Caenorhabditis elegans homologue of NDUFA11. Animals homozygous for a CRISPR-Cas9-generated knockout allele of nduf-11 arrested at the second larval (L2) development stage. Reducing (but not eliminating) expression using RNAi allowed development to adulthood, enabling characterisation of the consequences: destabilisation of complex I and its supercomplexes and perturbation of respiratory function. The loss of NADH dehydrogenase activity was compensated by enhanced complex II activity, with the potential for detrimental reactive oxygen species (ROS) production. Cryo-electron tomography highlighted aberrant morphology of cristae and widening of both cristae junctions and the intermembrane space. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development presumably arises due to its involvement in complex I and supercomplex maintenance. This highlights the importance of respiratory complex integrity for health and the potential for its perturbation to cause mitochondrial disease. This article has an associated First Person interview with Amber Knapp-Wilson, joint first author of the paper
- …