37 research outputs found
Improved ruminant genetics: Implementation guidance for policymakers and investors
Genetics makes use of natural variation among animals. Selecting preferred animals as parents can yield permanent and cumulative improvements in the population. More efficient animals can greatly reduce greenhouse gas emissions and feed costs. Breeding, including cross-breeding between indigenous and imported species, can also improve resilience to diseases and heat stress and increase reproductive performance
AMI observations of unmatched Planck ERCSC LFI sources at 15.75 GHz
The Planck Early Release Compact Source Catalogue includes 26 sources with no
obvious matches in other radio catalogues (of primarily extragalactic sources).
Here we present observations made with the Arcminute Microkelvin Imager Small
Array (AMI SA) at 15.75 GHz of the eight of the unmatched sources at
declination > +10 degrees. Of the eight, four are detected and are associated
with known objects. The other four are not detected with the AMI SA, and are
thought to be spurious.Comment: 6 pages, 5 figures, 4 table
Engaging Undergraduates to Solve Global Health Challenges: A New Approach Based on Bioengineering Design
Recent reports have highlighted the need for educational programs to prepare students for careers developing and disseminating new interventions that improve global public health. Because of its multi-disciplinary, design-centered nature, the field of Biomedical Engineering can play an important role in meeting this challenge. This article describes a new program at Rice University to give undergraduate students from all disciplines a broad background in bioengineering and global health and provides an initial assessment of program impact. Working in partnership with health care providers in developing countries, students in the Beyond Traditional Borders (BTB) initiative learn about health challenges of the poor and put this knowledge to work immediately, using the engineering design process as a framework to formulate solutions to complex global health challenges. Beginning with a freshman design project and continuing through a capstone senior design course, the BTB curriculum uses challenges provided by partners in the developing world to teach students to integrate perspectives from multiple disciplines, and to develop leadership, communication, and teamwork skills. Exceptional students implement their designs under the guidance of clinicians through summer international internships. Since 2006, 333 students have designed more than 40 technologies and educational programs; 28 have been implemented in sub-Saharan Africa, Latin America, the Caribbean, southeast Asia, and the United States. More than 18,000 people have benefited from these designs. 95% of alumni who completed an international internship reported that participation in the program changed or strengthened their career plans to include a focus on global health medicine, research, and/or policy. Empowering students to use bioengineering design to address real problems is an effective way to teach the new generation of leaders needed to solve global health challenges
DNA and bone structure preservation in medieval human skeletons
Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimized a method that is frequently used for isolating DNA from modern samples, Chelex® 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR® Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex® 100 is for isolating ancient DNA from archaeological bones and teeth. This optimized method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250 bp were successfully amplified
Recommended from our members
The bii4africa dataset of faunal and floral population intactness estimates across Africa’s major land uses
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species’ population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate ‘intactness scores’: the remaining proportion of an ‘intact’ reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region’s major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/ taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems
The bii4africa dataset of faunal and floral population intactness estimates across Africa’s major land uses
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species’ population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate ‘intactness scores’: the remaining proportion of an ‘intact’ reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region’s major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Deoxygenation following coral spawning and low-level thermal stress trigger mass coral mortality at Coral Bay, Ningaloo Reef
Oxygen depletion is well recognized for its role in the degradation of tropical coral reefs. Extreme acute hypoxic events that lead to localized mass mortality and the formation of ‘dead zones’ (a region where few or no organisms can survive due to a lack of oxygen) are particularly concerning as they can result in wide-ranging losses of biodiversity, ecosystem productivity and functioning, economic prosperity, and wellbeing. In March of 2022, the annual coral spawning event at Bills Bay (Coral Bay, Ningaloo Reef, Western Australia) coincided with elevated seawater temperature, calm weather conditions and a flood tide resulting in coral spawn becoming trapped in Bills Bay. Immediately after, there was a mass fish kill, which is believed to have been caused by local eutrophication resulting in severe oxygen depletion. The impact the deoxygenation and thermal stress event had on benthic communities has not yet been quantified; hence, the principal aim of this study is to document the extent of change that occurred in the benthic communities before and after the 2022 coral spawning event over a spatial gradient from the nearshore to mid-reef. Percent coral cover in the Bay decreased from 55.62 ± 2.26% in 2016–2018 and 70.44 ± 5.24% in 2021 to 1.16 ± 0.51% in 2022. Over the same period, the percent cover of turf algae increased from 27.40 ± 2.00% in 2016–2018 and 24.66 ± 6.67% in 2021 to 78.80 ± 3.06% in 2022, indicating a dramatic phase shift occurred at Bills Bay. The abundance of healthy coral colonies recorded on replicated belt transects at nine sites declined from 3452 healthy individuals in 2018 to 153 individuals in 2022 and coral generic richness decreased by 84.61%, dropping from 26 genera in 2018 to 4 genera in 2022. Previously dominant genera such as Acropora, Montipora and Echinopora, were extirpated from survey sites. Isolated colonies of massive Porites spp. and encrusting Cyphastrea sp. survived the event and understanding the mechanisms underpinning their greater survivorship is an important area of future research. Long-term monitoring is recommended to track the community recovery process and improve our understanding of the longer-term implications of this acute mortality event on the ecological, socio-economic and cultural values of Ningaloo Reef