167 research outputs found

    Screw configuration in proximal humerus plating has a significant impact on fixation failure risk predicted by finite element models

    Get PDF
    Background: Proximal humeral fractures occur frequently, with fixed angle locking plates often being used for their treatment. No current quantitative evidence for the effect of different screw configurations exists, and the large number of variations makes biomechanical testing prohibitive. Therefore, we used an established and validated finite element osteosynthesis test kit to quantify the effect of variations in screw configuration on predicted failure risk of PHILOS plate fixation for unstable proximal humerus fractures. Methods: Twenty-six low-density humerus models were osteotomized to create malreduced unstable 3-part fractures that were virtually fixed with PHILOS plates. Twelve screw configurations were simulated: 6 using 2 screw rows, 4 using 3 rows, and 1 with either 8 or 9 screws. Three physiological loading cases were modeled and an established finite element analysis methodology was used. The average peri-screw bone strain, previously demonstrated to predict fatigue cutout failure, was used to compare the different configurations. Results: Significant differences in peri-screw strains, and thus predicted failure risk, were seen with different combinations. The 9-screw configuration demonstrated the lowest peri-screw strains. Fewer screw constructs showed lower strains when placed further apart. The calcar screws (row E) significantly (P &lt; .001) reduced fixation failure risk. Conclusion: Screw configurations significantly impact predicted cutout failure risk for locking plate fixations of unstable proximal humerus fractures in low-density bone. Although requiring clinical corroboration, the result of this study suggests that additional screws reduce peri-screw strains, the distance between them should be maximized whenever possible and the calcar screws should be used.</p

    The influence of screw length on predicted cut-out failures for proximal humeral fracture fixations predicted by finite element simulations

    Get PDF
    Background: The aim of this study was to identify the effect of screw length on predictions of fixation failure in three-part proximal humeral fractures using a finite element-based osteosynthesis modelling toolkit. Methods: A mal-reduced unstable three-part AO/OTA 11-B3.2 fracture with medial comminution was simulated in forty-two digitally processed proximal humeri covering a spectrum of bone densities and fixed with the PHILOS plate using three distal and six proximal locking screws. Four test groups were generated based on the screw tip to joint surface distance (TJD), with all proximal screws being shortened from 4 mm TJD to be 8, 12 or 16 mm TJD. Average bone strains around the screw tips, correlating with biomechanical cyclic cut-out-type failure, were evaluated in three physiological loading protocols representing simple shoulder motions. Six further groups were tested, where five of the proximal screws were inserted to 4 mm TJD and the sixth screw to 8 mm TJD. Results: Exponential increases in the predicted risk of fixation failure were seen with increased tip-to-joint distances (p &lt; 0.001). When one of the proximal screws was placed 8 mm from the joint, with the remaining five at 4 mm distance, significant increases (p &lt; 0.001) were registered in the strains around the screw tips in all except the two superior screws. This effect was maximal around the calcar screws (p &lt; 0.001) and for lower density samples (p &lt; 0.001). Conclusions: These results suggest that longer screws provide reduced risk of cut-out failure, i.e. distalisation and/or varisation of the head fragment, and thus may decrease failure rates in proximal humeral fractures treated with angular stable plates. These findings require clinical corroboration and further studies to investigate the risk of screw perforation.</p

    Histomorphometric Assessment of Cancellous and Cortical Bone Material Distribution in the Proximal Humerus of Normal and Osteoporotic Individuals Significantly Reduced Bone Stock in the Metaphyseal and Subcapital Regions of Osteoporotic Individuals

    Get PDF
    Osteoporosis is a systemic disorder predominantly affecting postmenopausal women but also men at an advanced age. Both genders may suffer from low-energy fractures of, for example, the proximal humerus when reduction of the bone stock or/and quality has occurred. The aim of the current study was to compare the amount of bone in typical fracture zones of the proximal humerus in osteoporotic and non-osteoporotic individuals. The amount of bone in the proximal humerus was determined histomorphometrically in frontal plane sections. The donor bones were allocated to normal and osteoporotic groups using the T-score from distal radius DXA measurements of the same extremities. The T-score evaluation was done according to WHO criteria. Regional thickness of the subchondral plate and the metaphyseal cortical bone were measured using interactive image analysis. At all measured locations the amount of cancellous bone was significantly lower in individuals from the osteoporotic group compared to the non-osteoporotic one. The osteoporotic group showed more significant differences between regions of the same bone than the non-osteoporotic group. In both groups the subchondral cancellous bone and the subchondral plate were least affected by bone loss. In contrast, the medial metaphyseal region in the osteoporotic group exhibited higher bone loss in comparison to the lateral side. This observation may explain prevailing fracture patterns, which frequently involve compression fractures and certainly has an influence on the stability of implants placed in this medial region. It should be considered when planning the anchoring of osteosynthesis materials in osteoporotic patients with fractures of the proximal humerus

    A rapid method for the generation of uniform acellular bone explants: a technical note

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone graft studies lack standardized controls. We aim to present a quick and reliable method for the intra-operative generation of acellular bone explants.</p> <p>Methods</p> <p>Therefore, ovine cancellous bone explants from the iliac crest were prepared and used to test several methods for the induction of cell death. Over night heat inactivation was used as positive treatment control, methods to be investigated included UV light, or X- ray exposure, incubation in a hypotonic solution (salt-free water) and a short cycle of repeated freezing and thawing.</p> <p>Results</p> <p>Viability of treated and 2 days cultured bone explants was investigated by lactate dehydrogenase assay. Non-treated cultured control explants maintained around 50% osteocyte viability, while osteocyte survival after the positive treatment control was abolished. The most dramatic loss in cell viability, together with a low standard deviation, was a repeated cycle of freezing and thawing.</p> <p>Conclusions</p> <p>To summarize, we present a freeze-thaw method for the creation of acellular bone explants, which is easy to perform, not time-consuming and provides consistent results.</p

    Evaluation of cannulated compression headless screws as an alternative implant for superior pubic ramus fracture fixation: a biomechanical study.

    Get PDF
    BACKGROUND/PURPOSE Pubic ramus fractures account for the most common types of pelvic fractures. The standard surgical approach for superior pubic ramus fractures (SPRF) is a minimally invasive percutaneous screw fixation. However, percutaneous closed reduction and internal fixation of anterior pelvic ring injuries have high failure rates of up to 15%. The aim of this biomechanical study was to evaluate the stability of SPRF following stabilization with retrograde placed cannulated compression headless screw (CCHS) versus conventional fully and partially threaded screws in an artificial pelvic bone model. METHODS SPRF type II as described by Nakatani et al. was created by means of osteotomies in eighteen anatomical composite hemi-pelvises. Specimens were stratified into three groups of six specimens each (n = 6) for fixation with either a 7.3 mm partially threaded cannulated screw (group RST), a 7.3 mm fully threaded cannulated screw (group RSV), or a 7.5 mm partially threaded cannulated CCHS (group CCS). Each hemi-pelvic specimen was tested in an inverted upright standing position under progressively increasing cyclic axial loading. The peak load, starting at 200 N, was monotonically increased at a rate of 0.1 N/cycle until 10 mm actuator displacement. RESULTS Total and torsional displacement were associated with higher values for RST versus CCS and RSV, with significant differences between RST and CCS for both these parameters (p ≤ 0.033). The differences between RST and RSV were significant for total displacement (p = 0.020), and a trend toward significance for torsional displacement (p = 0.061) was observed. For both failure criteria 2 mm total displacement and 5° torsional displacement, CCS was associated with significantly higher number of cycles compared to RST (p ≤ 0.040). CONCLUSION CCHS fixation presented predominantly superior stability to the standard surgical treatment and could therefore be a possible alternative implant for retrograde SPRF screw fixation, whereas partially threaded screws in group RST were associated with inferior biomechanical stability

    Anterior column acetabulum fracture fixation with a screw-augmented acetabular cup-a biomechanical feasibility study

    Full text link
    BACKROUND: The beneficial effects of unrestricted postoperative full weight bearing for elderly patients suffering hip fractures have been demonstrated. However, there is still existing disagreement regarding acetabular fractures.The aim of this biomechanical study was to evaluate the initial load bearing capabilities of different fixation constructs of anterior column fractures (ACFs) in osteoporotic bone. METHODS: Artificial pelvises with ACFs were assigned to three groups (n = 8) and fixed with either a 7.3 mm partially threaded antegrade cannulated screw (group AASS), an anteriorly placed 3.5 mm plate (group AAPF), or a press-fit acetabular cup with screw augmentation (group AACF). All specimens underwent ramped loading from 20 N preload to 200 N at a rate of 18 N/s, followed by progressively increasing cyclic testing at 2 Hz until failure performed at a rate of 0.05 N/cycle. Relative displacements of the bone fragments were monitored by motion tracking. FINDINGS: Initial stiffness (N/mm) was 118.5 ± 34.3 in group AASS, 100.4 ± 57.5 in group AAPF, and 92.9 ± 44.0 in group AACF, with no significant differences between the groups, p = 0.544. Cycles to failure were significantly higher in groups AACF (8364 ± 2243) and AAPF (7827 ± 2881) compared to group AASS (4440 ± 2063), p ≤ 0.041. INTERPRETATION: From a biomechanical perspective, the minimally invasive cup fixation with screw augmentation demonstrated comparable stability to plate osteosynthesis of ACFs in osteoporotic bone. The results of the present study do not allow to conclusively answer whether immediate full weight bearing following cup fixation shall be allowed. Given its similar performance to plate osteosynthesis, this remains rather an utopic wish and a more conservative approach deems more reasonable

    Evaluation of cannulated compression headless screws as an alternative implant for superior pubic ramus fracture fixation: a biomechanical study

    Full text link
    BACKGROUND/PURPOSE: Pubic ramus fractures account for the most common types of pelvic fractures. The standard surgical approach for superior pubic ramus fractures (SPRF) is a minimally invasive percutaneous screw fixation. However, percutaneous closed reduction and internal fixation of anterior pelvic ring injuries have high failure rates of up to 15%. The aim of this biomechanical study was to evaluate the stability of SPRF following stabilization with retrograde placed cannulated compression headless screw (CCHS) versus conventional fully and partially threaded screws in an artificial pelvic bone model. METHODS: SPRF type II as described by Nakatani et al. was created by means of osteotomies in eighteen anatomical composite hemi-pelvises. Specimens were stratified into three groups of six specimens each (n = 6) for fixation with either a 7.3 mm partially threaded cannulated screw (group RST), a 7.3 mm fully threaded cannulated screw (group RSV), or a 7.5 mm partially threaded cannulated CCHS (group CCS). Each hemi-pelvic specimen was tested in an inverted upright standing position under progressively increasing cyclic axial loading. The peak load, starting at 200 N, was monotonically increased at a rate of 0.1 N/cycle until 10 mm actuator displacement. RESULTS: Total and torsional displacement were associated with higher values for RST versus CCS and RSV, with significant differences between RST and CCS for both these parameters (p ≤ 0.033). The differences between RST and RSV were significant for total displacement (p = 0.020), and a trend toward significance for torsional displacement (p = 0.061) was observed. For both failure criteria 2 mm total displacement and 5° torsional displacement, CCS was associated with significantly higher number of cycles compared to RST (p ≤ 0.040). CONCLUSION: CCHS fixation presented predominantly superior stability to the standard surgical treatment and could therefore be a possible alternative implant for retrograde SPRF screw fixation, whereas partially threaded screws in group RST were associated with inferior biomechanical stability

    Anterior column acetabulum fracture fixation with a screw-augmented acetabular cup-a biomechanical feasibility study.

    Get PDF
    BACKROUND The beneficial effects of unrestricted postoperative full weight bearing for elderly patients suffering hip fractures have been demonstrated. However, there is still existing disagreement regarding acetabular fractures.The aim of this biomechanical study was to evaluate the initial load bearing capabilities of different fixation constructs of anterior column fractures (ACFs) in osteoporotic bone. METHODS Artificial pelvises with ACFs were assigned to three groups (n = 8) and fixed with either a 7.3 mm partially threaded antegrade cannulated screw (group AASS), an anteriorly placed 3.5 mm plate (group AAPF), or a press-fit acetabular cup with screw augmentation (group AACF). All specimens underwent ramped loading from 20 N preload to 200 N at a rate of 18 N/s, followed by progressively increasing cyclic testing at 2 Hz until failure performed at a rate of 0.05 N/cycle. Relative displacements of the bone fragments were monitored by motion tracking. FINDINGS Initial stiffness (N/mm) was 118.5 ± 34.3 in group AASS, 100.4 ± 57.5 in group AAPF, and 92.9 ± 44.0 in group AACF, with no significant differences between the groups, p = 0.544. Cycles to failure were significantly higher in groups AACF (8364 ± 2243) and AAPF (7827 ± 2881) compared to group AASS (4440 ± 2063), p ≤ 0.041. INTERPRETATION From a biomechanical perspective, the minimally invasive cup fixation with screw augmentation demonstrated comparable stability to plate osteosynthesis of ACFs in osteoporotic bone. The results of the present study do not allow to conclusively answer whether immediate full weight bearing following cup fixation shall be allowed. Given its similar performance to plate osteosynthesis, this remains rather an utopic wish and a more conservative approach deems more reasonable
    • …
    corecore