116 research outputs found
Analysis of the stresses and deflections of a LNG tanker.
http://archive.org/details/analysisofstress109451646
Finite element analysis of ultrasonic CFRP laminate inspection
Carbon Fibre Reinforced Polymer (CFRP) materials pose a challenge for NDE inspections due to their anisotropic material properties and often complex morphologies. Simulation is a vital tool in the design of ultrasonic inspections, improving setup and helping understand wave propagation in complex components. In this work, three different approaches of constructing accurate Finite Element Analysis (FEA) models of CFRP components are presented. The first approach generates a model of a flat CFRP laminate using the design specification to construct the idealised laminate geometry – essentially recreating the ‘as designed’ component in the model. The second approach utilises photomicrographs of the laminates’ cross-section to produce a more realistic ‘as built’ geometry within the model. Ultrasonic inspection simulations performed show a good correlation when comparing resulting A-scans with experiments. A final modelling approach of using an image of X-Ray CT data is then performed to develop an accurate model of a tapered composite structure. This paper presents the construction of the finite element models using PZFlex and the subsequent results highlighting the ability of the simulations to recreate experimental inspection performance
Lattice QCD with mixed actions
We discuss some of the implications of simulating QCD when the action used
for the sea quarks is different from that used for the valence quarks. We
present exploratory results for the hadron mass spectrum and pseudoscalar meson
decay constants using improved staggered sea quarks and HYP-smeared overlap
valence quarks. We propose a method for matching the valence quark mass to the
sea quark mass and demonstrate it on UKQCD clover data in the simpler case
where the sea and valence actions are the same.Comment: 15 pages, 10 figures some minor modification to text and figures.
Accepted for publicatio
Finite element analysis simulations for ultrasonic array NDE inspections
Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspections – minimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures
Key aerodynamic technologies for aircraft engine nacelles
Customer requirements and vision in aerospace dictate that the next generation of civil transport aircraft should have a strong emphasis on increased safety, reduced environmental impact and reduced cost without sacrificing performance. In this context, the School of Mechanical and Aerospace Engineering at the Queen's University of Belfast and Bombardier have, in recent years, been conducting research into some of the key aerodynamic technologies for the next generation of aircraft engine nacelles. Investigations have been performed into anti-icing technology, efficient thrust reversal, engine fire zone safety, life cycle cost and integration of the foregoing with other considerations in engine and aircraft design. A unique correlation for heat transfer in an anti-icing system has been developed. The effect of normal vibration on heat transfer in such systems has been found to be negligible. It has been shown that carefully designed natural blockage thrust reversers without a cascade can reduce aircraft weight with only a small sacrifice in the reversed thrust. A good understanding of the pressure relief doors and techniques to improve the performance of such doors have been developed. Trade off studies between aerodynamics, manufacturing and assembly of engine nacelles have shown the potential for a significant reduction in life cycle cost
Palliative care after stroke: A review.
BACKGROUND: Palliative care is an integral aspect of stroke unit care. In 2016, the American Stroke Association published a policy statement on palliative care and stroke. Since then there has been an expansion in the literature on palliative care and stroke. AIM: Our aim was to narratively review research on palliative care and stroke, published since 2015. RESULTS: The literature fell into three broad categories: (a) scope and scale of palliative care needs, (b) organization of palliative care for stroke, and (c) shared decision making. Most literature was observational. There was a lack of evidence about interventions that address specific palliative symptoms or improve shared decision making. Racial disparities exist in access to palliative care after stroke. There was a dearth of literature from low- and middle-income countries. CONCLUSION: We recommend further research, especially in low- and middle-income countries, including research to explore why racial disparities in access to palliative care exist. Randomized trials are needed to address specific palliative care needs after stroke and to understand how best to facilitate shared decision making
Localization and chiral symmetry in 2+1 flavor domain wall QCD
We present results for the dependence of the residual mass of domain wall
fermions (DWF) on the size of the fifth dimension and its relation to the
density and localization properties of low-lying eigenvectors of the
corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1
flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate
ensembles of configurations with a space-time volume and an
extent of 8 in the fifth dimension for the sea quarks. We demonstrate the
existence of a regime where the degree of locality, the size of chiral symmetry
breaking and the rate of topology change can be acceptable for inverse lattice
spacings GeV.Comment: 59 Pages, 23 figures, 1 MPG linke
Rational Design of Temperature-Sensitive Alleles Using Computational Structure Prediction
Temperature-sensitive (ts) mutations are mutations that exhibit a mutant phenotype at high or low temperatures and a wild-type phenotype at normal temperature. Temperature-sensitive mutants are valuable tools for geneticists, particularly in the study of essential genes. However, finding ts mutations typically relies on generating and screening many thousands of mutations, which is an expensive and labor-intensive process. Here we describe an in silico method that uses Rosetta and machine learning techniques to predict a highly accurate “top 5” list of ts mutations given the structure of a protein of interest. Rosetta is a protein structure prediction and design code, used here to model and score how proteins accommodate point mutations with side-chain and backbone movements. We show that integrating Rosetta relax-derived features with sequence-based features results in accurate temperature-sensitive mutation predictions
A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic
Eroding permafrost coasts are likely indicators and integrators of changes in the Arctic System as they
are susceptible to the combined effects of declining sea ice extent, increases in open water duration,
more frequent and impactful storms, sea-level rise, and warming permafrost. However, few
observation sites in the Arctic have yet to link decadal-scale erosion rates with changing environmental
conditions due to temporal data gaps. This study increases the temporal fidelity of coastal permafrost
bluff observations using near-annual high spatial resolution (<1 m) satellite imagery acquired
between 2008–2017 for a 9 km segment of coastline at Drew Point, Beaufort Sea coast, Alaska. Our
results show that mean annual erosion for the 2007–2016 decade was 17.2 m yr−1, which is 2.5 times
faster than historic rates, indicating that bluff erosion at this site is likely responding to changes in the
Arctic System. In spite of a sustained increase in decadal-scale mean annual erosion rates, mean open water season erosion varied from 6.7 m yr−1 in 2010 to more than 22.0 m yr−1 in 2007, 2012, and 2016. This variability provided a range of coastal responses through which we explored the different roles of potential environmental drivers. The lack of significant correlations between mean open water season erosion and the environmental variables compiled in this study indicates that we may not be adequately capturing the environmental forcing factors, that the system is conditioned by long-term transient effects or extreme weather events rather than annual variability, or that other not yet considered factors may be responsible for the increased erosion occurring at Drew Point. Our results highlight an increase in erosion at Drew Point in the 21st century as well as the complexities associated with unraveling the factors responsible for changing coastal permafrost bluffs in the Arctic
- …