41 research outputs found

    The Effect of Senior Medical Student Tutors Compared to Faculty Tutors on Examination Scores of First- and Second-Year Medical Students in Two Problem-Based Learning Courses

    Get PDF
    At the University of Hawaii John A. Burns School of Medicine, senior medical student volunteers are used as tutors for some problem-based learning groups in both the first and second years. Previous studies on the advantages and disadvantages of student tutors compared to faculty tutors have been equivocal. This study expected to answer the following question: Are there differences in examination scores for learners in their first or second year tutored by fourth-year medical students compared to those tutored by faculty members on two different types of examinations? Students were assessed using more clinically relevant, modified essay question examinations and multiple-choice question examinations. Student grades for eight consecutive years were sorted for year and type of examination into those tutored by a faculty member and those tutored primarily by a senior medical student. The only difference favored faculty tutors on second-year examinations that contained more clinically relevant questions. This phenomenon may be explained by the clinical expertise of faculty tutors making a difference in the second year but not the first year

    Cosmology with a long range repulsive force

    Get PDF
    We consider a class of cosmological models in which the universe is filled with a (non-electric) charge density that repels itself by means of a force carried by a vector boson with a tiny mass. When the vector's mass depends upon other fields, the repulsive interaction gives rise to an electromagnetic barrier which prevents these fields from driving the mass to zero. This can modify the cosmology dramatically. We present a very simple realization of this idea in which the vector's mass arises from a scalar field. The electromagnetic barrier prevents this field from rolling down its potential and thereby leads to accelerated expansion.Comment: 15 pages, 8 figures, LaTeX (version accepted for publication in PRD). 3 new figures, extended discussion of observational consequence

    Bonding, Moment Formation, and Magnetic Interactions in Ca14MnBi11 and Ba14MnBi11

    Full text link
    The ``14-1-11'' phase compounds based on magnetic Mn ions and typified by Ca14MnBi11 and Ba14MnBi11 show unusual magnetic behavior, but the large number (104) of atoms in the primitive cell has precluded any previous full electronic structure study. Using an efficient, local orbital based method within the local spin density approximation to study the electronic structure, we find a gap between a bonding valence band complex and an antibonding conduction band continuum. The bonding bands lack one electron per formula unit of being filled, making them low carrier density p-type metals. The hole resides in the MnBi4 tetrahedral unit and partially compensates the high spin d^5 Mn moment, leaving a net spin near 4 \mu_B that is consistent with experiment. These manganites are composed of two disjoint but interpenetrating `jungle gym' networks of spin 4/2 MnBi4^{9-} units with ferromagnetic interactions within the same network, and weaker couplings between the networks whose sign and magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic) the ferro- and antiferromagnetic states are calculated to be essentially degenerate. The band structure of the ferromagnetic states is very close to half metallic.Comment: 17 pages, containing 10 postscript figures and 5 tables. Two additional figures (Fig.8 and 11 of the paper) are provided in JPG format in separate files. Submitted to Phys. Rev. B on September 20th 200

    Speech Communication

    Get PDF
    Contains table of contents for Part IV, table of contents for Section 1 and reports on five research projects.Apple Computer, Inc.C.J. Lebel FellowshipNational Institutes of Health (Grant T32-NS07040)National Institutes of Health (Grant R01-NS04332)National Institutes of Health (Grant R01-NS21183)National Institutes of Health (Grant P01-NS23734)U.S. Navy / Naval Electronic Systems Command (Contract N00039-85-C-0254)U.S. Navy - Office of Naval Research (Contract N00014-82-K-0727

    The Office of Medical Education.

    Get PDF
    corecore