1,664 research outputs found

    Demographics by depth: spatially explicit life-history dynamics of a protogynous reef fish

    Get PDF
    Distribution and demographics of the hogfish (Lachnolaimus maximus) were investigated by using a combined approach of in situ observations and life history analyses. Presence, density, size, age, and size and age at sex change all varied with depth in the eastern Gulf of Mexico. Hogfish (64–774 mm fork length and 0–19 years old) were observed year-round and were most common over complex, natural hard bottom habitat. As depth increased, the presence and density of hogfish decreased, but mean size and age increased. Size at age was smaller nearshore (<30 m). Length and age at sex change of nearshore hogfish were half those of offshore hogfish and were coincident with the minimum legal size limit. Fishing pressure is presumably greater nearshore and presents a confounding source of increased mortality; however, a strong red tide occurred the year before this study began and likely also affected nearshore demographics. Nevertheless, these data indicate ontogenetic migration and escapement of fast-growing fish to offshore habitat, both of which should reduce the likelihood of fishing-induced evolution. Data regarding the hogfish fishery are limited and regionally dependent, which has confounded previous stock assessments; however, the spatially explicit vital rates reported herein can be applied to future monitoring efforts

    Spawning cycles and habitats for ballyhoo (Hemiramphus brasiliensis) and balao (H. balao) in south Florida

    Get PDF
    Two halfbeak species, ballyhoo (Hemiramphus brasiliensis) and balao (H. balao), are harvested as bait in south Florida waters, and recent changes in fishing effort and regulations prompted this investigation of the overlap of halfbeak fishing grounds and spawning grounds. Halfbeaks were sampled aboard commercial fishing vessels, and during fishery-independent trips, to determine spatial and temporal spawning patterns of both species. Cyclic patterns of gonadosomatic indices (GSIs) indicated that both species spawned during spring and summer months. Histological analysis demonstrated that specific stages of oocyte development can be predicted from GSI values; for example, female ballyhoo with GSIs >6.0 had hydrated oocytes that were 2.0−3.5 mm diameter. Diel changes in oocyte diameters and histological criteria demonstrated that final oocyte maturation occurred over a 30- to 36-hour period and that ballyhoo spawned at dusk. Hydration of oocytes began in the morning, and ovulation occurred at sunset of that same day; therefore females with hydrated oocytes were ready to spawn within hours. We compared maps of all locations where fish were collected to maps of locations where spawning females (i.e. females with GSIs >6.0) were collected to determine the degree of overlap of halfbeak fishing and spawning grounds. We also used geographic information system (GIS) data to describe the depth and bottom type of halfbeak spawning grounds. Ballyhoo spawned all along the coral reef tract of the Atlantic Ocean, inshore of the reef tract, and in association with bank habitats within Florida Bay. In the Atlantic Ocean, balao spawned along the reef tract and in deeper, more offshore waters than did ballyhoo; balao were not found inshore of the coral reef tract or in Florida Bay. Both halfbeak species, considered together, spawned throughout the fishing grounds of south Florida

    Larval and settlement periods of the northern searobin (Prionotus carolinus) and the striped searobin (P. evolans)

    Get PDF
    This study reports new information about searobin (Prionotus spp.) early life history from samples collected with a Tucker trawl (for planktonic stages) and a beam trawl (for newly settled fish) from the coastal waters of New Jersey. Northern searobin, Prionotus carolinus, were much more numerous than striped searobin, P. evolans, often by an order of magnitude. Larval Prionotus were collected during the period July–October and their densities peaked during September. For both species, notochord flexion was complete at 6–7 mm standard length (SL) and individuals settled at 8–9 mm SL. Flexion occurred as early as 13 days after hatching and settlement occurred as late as 25 days after hatching, according to ages estimated from sagittal microincrements. Both species settled directly in continental shelf habitats without evidence of delayed metamorphosis. Spawning, larval dispersal, or settlement may have occurred within certain estuaries, particularly for P. evolans; thus collections from shelf areas alone do not permit estimates of total larval production or settlement rates. Reproductive seasonality of P. carolinus and P. evolans may vary with respect to latitude and coastal depth. In this study, hatching dates and sizes of age-0 P. carolinus varied with respect to depth or distance from the New Jersey shore. Older and larger age-0 individuals were found in deeper waters. These variations in searobin age and size appear to be the combined result of intraspecific variations in searobin reproductive seasonality and the limited capability of searobin eggs and larvae to disperse

    Coastal Origin of Common Snook, Centropomus undecimalis, in Florida Bay

    Get PDF
    We used the elemental signatures of otoliths to investigate the coastal origin of common snook (Centropomus undecimalis) in Florida Bay, Florida and evaluate current management boundaries. We examined juvenile otoliths from Florida’s Atlantic and Gulf of Mexico (Gulf) populations and determined that there were significant differences in several elemental ratios (Mn/Ca, Cu/Ca, Sr/Ca, Ba/Ca). In addition, a discriminant function analysis (DFA) indicated a significant separation between the juveniles from each coast and otoliths were never misclassified by coast, indicating a distinct difference in their otolith chemistry. Using only juvenile otoliths to derive a calibration function, a separate DFA indicated that the adults from Florida Bay likely originated from both coasts of Florida in roughly equal proportions. Although these preliminary results contradict tagging studies, they concur with genetic studies suggesting that both east and west coast populations contribute to the common snook found in Florida Bay

    Age, Growth, Mortality, and Reproduction of Roughtongue Bass, Pronotogrammus martinicensis (Serranidae), in the Northeastern Gulf of Mexico

    Get PDF
    The inaccessibility of outer continental shelf reefs has made it difficult to investigate the biology of Pronotogrammus martinicensis, a small sea bass known to be numerous and widely distributed in such habitat. This study takes advantage of a series of cruises in the northeastern Gulf of Mexico that collected 1,485 individuals. Fish were collected over or in the vicinity of reef habitats with hook and line, otter trawl, and rotenone. We present a preliminary validation of an otolith ageing method and report that P. martinicensis reached a maximum size of 143 mm standard length (SL), grew to about 50% of this size within their first year, and lived to a maximum age of 15 yr. Size at age data (n = 490) fitted to the von Bertalanffy growth model yielded the predictive equation: SLt = 106.3(1 - e[-0.641{t-0.646}]), where t = age in years. Gonad histology (n = 333) was examined to confirm that P. martinicensis is a protogynous, monandric hermaphrodite. We found no evidence of simultaneous hermaphroditism, which had been tentatively proposed in a previous study. Most P. martinicensis matured as females in their second year (age 1), primary oocytes developed asynchronously into secondary oocytes, and females were batch spawners. Males were postmaturational. Seminiferous tissue formed as early as age 1, but, although the rate of sex change is unknown, most fish did not function as a male until age 3 or age 4. These data provide age-based benchmarks of a common reef fish species living on the outer continental shelf of the tropical western North Atlantic Ocean
    • …
    corecore