337 research outputs found
Virus satellites drive viral evolution and ecology
Virus satellites are widespread subcellular entities, present both in eukaryotic and in prokaryotic cells. Their modus vivendi involves parasitism of the life cycle of their inducing helper viruses, which assures their transmission to a new host. However, the evolutionary and ecological implications of satellites on helper viruses remain unclear. Here, using staphylococcal pathogenicity islands (SaPIs) as a model of virus satellites, we experimentally show that helper viruses rapidly evolve resistance to their virus satellites, preventing SaPI proliferation, and SaPIs in turn can readily evolve to overcome phage resistance. Genomic analyses of both these experimentally evolved strains as well as naturally occurring bacteriophages suggest that the SaPIs drive the coexistence of multiple alleles of the phage-coded SaPI inducing genes, as well as sometimes selecting for the absence of the SaPI depressing genes. We report similar (accidental) evolution of resistance to SaPIs in laboratory phages used for Staphylococcus aureus typing and also obtain the same qualitative results in both experimental evolution and phylogenetic studies of Enterococcus faecalis phages and their satellites viruses. In summary, our results suggest that helper and satellite viruses undergo rapid coevolution, which is likely to play a key role in the evolution and ecology of the viruses as well as their prokaryotic hosts
Max '91: Flare research at the next solar maximum
To address the central scientific questions surrounding solar flares, coordinated observations of electromagnetic radiation and energetic particles must be made from spacecraft, balloons, rockets, and ground-based observatories. A program to enhance capabilities in these areas in preparation for the next solar maximum in 1991 is recommended. The major scientific issues are described, and required observations and coordination of observations and analyses are detailed. A program plan and conceptual budgets are provided
High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil
When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south central Indiana, USA, to quantify how transpiration and photosynthesis respond to fluctuations in VPD versus SWC. High VPD and low SWC both explained reductions in photosynthesis relative to its long-term mean, as well as reductions in transpiration relative to potential transpiration estimated with the Penman-Monteith equation. Flux responses to typical fluctuations in SWC and VPD had similar magnitudes. Integrated over the year, VPD fluctuations accounted for significant reductions of GPP in both nondrought and drought years. Our results suggest that increasing VPD under climatic warming could reduce forest CO2 uptake regardless of changes in SWC
Phage inducible islands in the gram-positive cocci
The SaPIs are a cohesive subfamily of extremely common phage-inducible chromosomal islands (PICIs) that reside quiescently at specific att sites in the staphylococcal chromosome and are induced by helper phages to excise and replicate. They are usually packaged in small capsids composed of phage virion proteins, giving rise to very high transfer frequencies, which they enhance by interfering with helper phage reproduction. As the SaPIs represent a highly successful biological strategy, with many natural Staphylococcus aureus strains containing two or more, we assumed that similar elements would be widespread in the Gram-positive cocci. On the basis of resemblance to the paradigmatic SaPI genome, we have readily identified large cohesive families of similar elements in the lactococci and pneumococci/streptococci plus a few such elements in Enterococcus faecalis. Based on extensive ortholog analyses, we found that the PICI elements in the four different genera all represent distinct but parallel lineages, suggesting that they represent convergent evolution towards a highly successful lifestyle. We have characterized in depth the enterococcal element, EfCIV583, and have shown that it very closely resembles the SaPIs in functionality as well as in genome organization, setting the stage for expansion of the study of elements of this type. In summary, our findings greatly broaden the PICI family to include elements from at least three genera of cocci
Capturing species-level drought responses in a temperate deciduous forest using ratios of photochemical reflectance indices between sunlit and shaded canopies
Highlights We examine capability of spectral indices to capture isohydric/anisohydric behavior. We used both in-situ spectral measurements and multi-angle MODIS images. Only PRI could capture species-level drought responses. This study presents a step forward to directly mapping emergent isohydricity. Abstract To classify trees along a spectrum of isohydric to anisohydric behavior is a promising new framework for identifying tree species\u27 sensitivities to drought stress, directly related to the vulnerability of carbon uptake of terrestrial ecosystems with increased hydroclimate variability. Trees with isohydric strategies regulate stomatal conductance to maintain stationary leaf water potential, while trees with anisohydric strategies allow leaf water potential to fall, which in the absence of significant hydraulic cavitation will facilitate greater rates of carbon uptake. Despite the recognition of the gas exchange consequences of isohydric and anisohydric strategies for individual tree species, there have been few studies regarding whether isohydric trees produces distinct spectral signatures under drought stress that can be remotely sensed. Here, we examined the capability of four vegetation indices (PRI, NDVI, NDVI705, and EVI) to capture the differences in spectral responses between isohydric and anisohydric trees within a deciduous forest in central Indiana, USA. Both leaf-level spectral measurements and canopy-scale satellite observations were used to compare peak growing-season spectral signatures between a drought and a non-drought year. At the leaf scale, two vegetation indices (NDVI and NDVI705) failed to capture the drought signal or the divergent isohydric/anisohydric behavior. EVI successfully captured the drought signal at both leaf and canopy scales, but failed to capture the divergent behavior between isohydric and anisohydric tree species during the drought. PRI captured both drought signals and divergent isohydric/anisohydric behavior at both leaf and canopy scales once normalized between sunlit (backward direction images) and shaded (forward direction images) portions of canopy, which indicates drought stress and subsequent photosynthetic downregulation are greater in the sunlit portion of canopy. This study presents a significant step forward in our ability to directly mapping emergent isohydricity at different scales based on divergent spectral signatures between sunlit and shaded canopies
The Grizzly, April 15, 1983
Second Attack: Improvements Sought for Security • New Senior Fund • Seminar Planned • The A\u27s Come to Helfferich Hall • Letter to the Editor: Most Abominable Act • Faculty Promotions Approved • President\u27s Corner • Sexual Assault in Quad • Security Tips • Nuclear Freeze Concert • Ursinus Representatives at UN • Ice Cream Night at Bear\u27s Den • Final Exam Schedule • Republicans for Rock! • Escape From Ursinus • Bear Batsmen Drop Slugfest • Men\u27s Track Evens Up • Men\u27s Tennis Nets Two Wins • Girls\u27 Nets Optimistic • Men\u27s Lacrosse Victorioushttps://digitalcommons.ursinus.edu/grizzlynews/1098/thumbnail.jp
RinA controls phage-mediated packaging and transfer of virulence genes in Gram-positive bacteria
Phage-mediated transfer of microbial genetic elements plays a crucial role in bacterial life style and evolution. In this study, we identify the RinA family of phage-encoded proteins as activators required for transcription of the late operon in a large group of temperate staphylococcal phages. RinA binds to a tightly regulated promoter region, situated upstream of the terS gene, that controls expression of the morphogenetic and lysis modules of the phage, activating their transcription. As expected, rinA deletion eliminated formation of functional phage particles and significantly decreased the transfer of phage and pathogenicity island encoded virulence factors. A genetic analysis of the late promoter region showed that a fragment of 272 bp contains both the promoter and the region necessary for activation by RinA. In addition, we demonstrated that RinA is the only phage-encoded protein required for the activation of this promoter region. This region was shown to be divergent among different phages. Consequently, phages with divergent promoter regions carried allelic variants of the RinA protein, which specifically recognize its own promoter sequence. Finally, most Gram-postive bacteria carry bacteriophages encoding RinA homologue proteins. Characterization of several of these proteins demonstrated that control by RinA of the phage-mediated packaging and transfer of virulence factor is a conserved mechanism regulating horizontal gene transfer
Solonamide B Inhibits Quorum Sensing and Reduces Staphylococcus aureus Mediated Killing of Human Neutrophils
Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a serious human pathogen, and particularly the spread of community associated (CA)-MRSA strains such as USA300 is a concern, as these strains can cause severe infections in otherwise healthy adults. Recently, we reported that a cyclodepsipeptide termed Solonamide B isolated from the marine bacterium, Photobacterium halotolerans strongly reduces expression of RNAIII, the effector molecule of the agr quorum sensing system. Here we show that Solonamide B interferes with the binding of S. aureus autoinducing peptides (AIPs) to sensor histidine kinase, AgrC, of the agr two-component system. The hypervirulence of USA300 has been linked to increased expression of central virulence factors like α-hemolysin and the phenol soluble modulins (PSMs). Importantly, in strain USA300 Solonamide B dramatically reduced the activity of α-hemolysin and the transcription of psma encoding PSMs with an 80% reduction in toxicity of supernatants towards human neutrophils and rabbit erythrocytes. To our knowledge this is the first report of a compound produced naturally by a Gram-negative marine bacterium that interferes with agr and affects both RNAIII and AgrA controlled virulence gene expression in S. aureus
Killing niche competitors by remote-control bacteriophage induction
A surprising example of interspecies competition is the production
by certain bacteria of hydrogen peroxide at concentrations that are
lethal for others. A case in point is the displacement of Staphylococcus
aureus by Streptococcus pneumoniae in the nasopharynx,
which is of considerable clinical significance. How it is accomplished,
however, has been a great mystery, because H2O2 is a very
well known disinfectant whose lethality is largely due to the
production of hyperoxides through the abiological Fenton reaction.
In this report, we have solved the mystery by showing that
H2O2 at the concentrations typically produced by pneumococci kills
lysogenic but not nonlysogenic staphylococci by inducing the SOS
response. The SOS response, a stress response to DNA damage, not
only invokes DNA repair mechanisms but also induces resident
prophages, and the resulting lysis is responsible for H2O2 lethality.
Because the vast majority of S. aureus strains are lysogenic, the
production of H2O2 is a very widely effective antistaphylococcal
strategy. Pneumococci, however, which are also commonly lysogenic
and undergo SOS induction in response to DNA-damaging
agents such as mitomycin C, are not SOS-induced on exposure to
H2O2. This is apparently because they are resistant to the DNAdamaging
effects of the Fenton reaction. The production of an
SOS-inducing signal to activate prophages in neighboring organisms
is thus a rather unique competitive strategy, which we
suggest may be in widespread use for bacterial interference.
However, this strategy has as a by-product the release of active
phage, which can potentially spread mobile genetic elements
carrying virulence genes.This work was supported by Comisión Interministerial de
Ciencia y Tecnología Grants BIO2005-08399-C02-02, BIO2008-05284-C02-02,
and BIO2008-00642-E/C; Cardenal Herrera-CEU University Grants PRCEUUCH25/
08 and Copernicus program; and by Conselleria de Agricultura, Pesca
i Alimentació (CAPiA), and from the Generalitat Valenciana (ACOMP07/258)
(J.R.P.). L.S. and D.V. were supported by Cardenal Herrera-CEU University
fellowships
- …