79 research outputs found

    Epigenetic Mechanisms in Autism Spectrum Disorders

    Get PDF

    Epigenetics and Breast Cancers

    Get PDF
    Several of the active compounds in foods, poisons, drugs, and industrial chemicals may, by epigenetic mechanisms, increase or decrease the risk of breast cancers. Enzymes that are involved in DNA methylation and histone modifications have been shown to be altered in several types of breast and other cancers resulting in abnormal patterns of methylation and/or acetylation. Hypermethylation at the CpG islands found in estrogen response element (ERE) promoters occurs in conjunction with ligand-bonded alpha subunit estrogen receptor (Erα) dimers wherein the ligand ERα dimer complex acts as a transcription factor and binds to the ERE promoter. Ligands could be 17-β-estradiol (E2), phytoestrogens, heterocyclic amines, and many other identified food additives and heavy metals. The dimer recruits DNA methyltransferases which catalyze the transfer of methyl groups from S-adenosyl-L-methionine (SAM) to 5′-cytosine on CpG islands. Other enzymes are recruited to the region by ligand-ERα dimers which activate DNA demethylases to act simultaneously to increase gene expression of protooncogenes and growth-promoting genes. Ligand-ERα dimers also recruit histone acetyltransferase to the ERE promoter region. Histone demethylases such as JMJD2B and histone methyltransferases are enzymes which demethylate lysine residues on histones H3 and/or H4. This makes the chromatin accessible for transcription factors and enzymes

    Effects of IGF-1 on IK and IK1 Channels via PI3K/Akt Signaling in Neonatal Cardiac Myocytes

    Get PDF
    Previous studies suggest that sarcolemmal potassium currents play important roles in cardiac hypertrophy. IGF-1 contributes to cardiac hypertrophy via activation of PI3K/Akt signaling. However, the relationships between IGF-1, PI3K/Akt signaling and sarcolemmal potassium currents remain unknown. Therefore, we tested the hypothesis that IGF-1 and PI3K/Akt signaling, independently, decrease sarcolemmal potassium currents in cardiac myocytes of neonatal rats. We compared the delayed outward rectifier (IK) and the inward rectifier (IK) current densities resulting from IGF-1 treatments to those resulting from simulation of PI3K/Akt signaling using adenoviral (Ad) BD110 and wild-type Akt and to those resulting from inhibition of PI3K signaling by LY294002. Ad.BD110 and Ad.Akt decreased IK and these decrements were attenuated by LY 294002. The IGF-1 treatments decreased both IK and IK1 but only the IK decrement was attenuated by LY294002. These findings demonstrate that IGF-1 may contribute to cardiac hypertrophy by PI3K/Akt signal transduction mechanisms in neonatal rat cardiomyocytes. Failure of LY294002 to effectively antagonize IGF-1 induced decrements in IK1 suggests that a signal pathway adjunct to PI3K/Akt contributes to IGF-1 protection against arrhythmogenesis in these myocytes. Our findings imply that sarcolemmal outward and inward rectifier potassium channels are substrates for IGF-1/PI3K/Akt signal transduction molecules

    Metabolic Energy Correlates of Heart Rate Variability Spectral Power Associated with a 900-Calorie Challenge

    Get PDF
    We studied healthy males challenged with a 900 Cal test beverage and correlated EE with the raw (ms2) and normalized units (nu) of total power (TP), low frequency/high frequency (LF/HF) and VLF spectral power of heart rate variability (HRV). The correlations were evaluated during 20 min of normal breathing (NB, control) and 20 min of paced breathing (PB) at 12 breaths·min−1 (0.2 Hz). EE was not significantly correlated with any of the HRV variables before the metabolic challenge. After the challenge, EE was positively correlated with LF/HF and with VLF; VLF was also positively correlated with LF/HF during both NB and PB. These findings suggest that EE may be a correlate of LF/HF and of VLF spectral power of HRV in healthy adolescent/young adult males. The association of lower resting energy expenditure with lower amounts of VLF spectral power may occur in individuals with predilections for obese phenotypes

    Pyramid Exploration Intervention, Environmental Enrichment, Aerobic Swimming Exercise and Brain Neuroplasticity in the Kainate Rat Model of Temporal Lobe Epilepsy

    Get PDF
    Previous studies have shown that environmental enrichment increases neurogenesis and reverses learning and memory deficits in rats with kainate-induced seizures. We tested the hypothesis that exploring a wooden pyramid for 3h/d augments neurogenesis and attenuates the learning and memory deficits following chemical lesioning of the hippocampus and motor cortex with kainic acid (KA). A pyramid exploration intervention (PEI) was created by subjecting rats to residing in a pyramidal wooden structure of 3 h/d for 30 d. We also compared the effects on neurogenesis for PEI to those for aerobic (swimming) exercise (EX) and environmental enrichment via exploration of a rectangular-shaped wooden cage. Following KA seizures, the PEI increased brain neurogenesis. Differences in measures of neurogenesis were not significantly different than those for EX and EE. Aerobic (swimming) exercise and novel environment exposures appear to increase neural plasticity and may be considered a complementary treatment for epilepsy

    Restricted Blood Flow Exercise in Sedentary, Overweight African-American Females May Increase Muscle Strength and Decrease Endothelial Function and Vascular Autoregulation

    Get PDF
    Abstract Objectives: Exercise with partially restricted blood flow is a low-load, low-intensity resistance training regimen which may have the potential to increase muscle strength in the obese, elderly and frail who are unable to do highload training. Restricted blood flow exercise has also been shown to affect blood vessel function variably and can, therefore, contribute to blood vessel dysfunction. This pilot study tests the hypothesis that unilateral resistance training of the leg extensors with partially restricted blood flow increases muscle strength and decreases vascular autoregulation. Methods: The subjects were nine normotensive, overweight, young adult African-Americans with low cardiorespiratory fitness who underwent unilateral training of the quadriceps' femoris muscles with partially restricted blood flow at 30% of the 1-repetition maximum (1-RM) load for 3 weeks. The 1-RM load and post-occlusion blood flow to the lower leg (calf) were measured during reactive hyperemia. Results: The 1-RM load increased in the trained legs from 77 ± 3 to 84 ± 4 kg (P < 0.05) in the absence of a significant effect on the 1-RM load in the contralateral untrained legs (P > 0.1). Post-occlusion blood flow decreased significantly in the trained legs from 19 ± 2 to 13 ± 2 mL· min -1 · dL -1 (P < 0.05) and marginally in the contralateral untrained legs from 18 ± 2 to 16 ± 1 mL· min -1 · dL -1 (P = 0.09). Changes in post-occlusion blood flow to the skin overlying the trained and the contralateral untrained muscles were not significant. Conclusion: These results demonstrate that restricted blood flow exercise, which results in significant gains in muscle strength, may produce decrements in endothelial dysfunction and vascular autoregulation. Future studies should determine whether pharmacopuncture plays a role in treatments for such blood vessel dysfunction
    corecore