14 research outputs found

    Interactive effects of endogenous morphine, nitric oxide, and ethanol on mitochondrial processes

    Get PDF
    Positive evolutionary pressure has preserved the ability to synthesize chemically authentic morphine, albeit in homeopathic concentrations, throughout animal phyla. The prototype catecholamine dopamine (DA) serves as an essential chemical intermediate in morphine biosynthesis both in plants and animals, thereby providing considerable insight into the roles reciprocal “morphinergic” and catecholamine regulation of diverse physiological processes. Primordial, multi-potential cell types, before the emergence of specialized plant and animal cells/organ systems, required selective mechanisms to limit their responsiveness to environmental noise. Accordingly, cellular systems that emerged with the potential for recruitment of the free radical gas nitric oxide (NO) as a multi-faceted autocrine/paracrine signaling molecule were provided with extremely positive evolutionary advantages. Endogenous “morphinergic” in concert with NO-coupled signaling systems have evolved as autocrine/paracrine regulators of metabolic homeostasis, energy metabolism, mitochondrial respiration and energy production. Basic physiological processes involving “morphinergic”/NO-coupled regulation of cardiovascular mitochondrial function, with special emphasis on the interactive effects of ethanol, are discussed within the context of our review

    Opioid peptides and opiate alkaloids in immunoregulatory processes

    Get PDF
    Among the various non-neuronal cell types known to express and utilize neuropeptides, those of the immune system have received much attention in recent years. In particular, comparative studies in vertebrates and invertebrates have shown that endogenous opioid peptides are engaged in receptor mediated autoregulatory immune and neuroendocrine processes. The majority of these immune processes are stimulatory, as determined by their effects on conformational changes indicative of immunocyte activation, cellular motility, and phagocytosis. Endogenous opioid peptides form an effective network of messenger molecules in cooperation with cytokines, opiate alkaloids, and certain regulatory enzymes (neutral endopeptidase 24.11). Peptide-mediated immunostimulatory effects observed in this system are operationally counteracted by the inhibitory effects of morphine and related opiates. Opioid/opiate signaling processes are mediated by several types of receptors with different degrees of selectivity. Among them the recently identified, opioid insensitive µ3 receptor deserves attention on account of its specificity for opiate alkaloids

    Catechol-O-methyltransferase: potential relationship to idiopathic hypertension

    Get PDF
    Catecholamine signaling pathways in the peripheral and central nervous systems (PNS, CNS, respectively) utilize catechol-O-methyltransferase (COMT) as a major regulatory enzyme responsible for deactivation of dopamine (DA), norepinephrine (NE) and epinephrine (E). Accordingly, homeostasis of COMT gene expression is hypothesized to be functionally linked to regulation of autonomic control of normotensive vascular events. Recently, we demonstrated that morphine administration in vitro resulted in decreased cellular concentrations of COMT-encoding mRNA levels, as compared to control values. In contrast, cells treated with E up regulated their COMT gene expression. In sum, these observations indicate a potential reciprocal linkage between end product inhibition of COMT gene expression by E and morphine. Interestingly, the observed effects of administered E on COMT gene expression suggest an enhancement of its own catabolism or, reciprocally, a stimulation morphine biosynthesis

    Mobility Coupled with Motivation Promotes Survival: The Evolution of Cognition as an Adaptive Strategy

    No full text
    Morphine plays a critical regulatory role in both simple and complex plant species. Dopamine is a critical chemical intermediate in the morphine biosynthetic pathway and may have served as a primordial agonist in developing catecholamine signaling pathways. While dopamine remains the preeminent catecholamine in invertebrate neural systems, epinephrine is the major product of catecholamine synthetic pathways in vertebrate species. Given that the enzymatic steps leading to the generation of morphine are similar to those constraining the evolutionary adaptation of the biosynthesis of catecholamines, we hypothesize that the emergence of these more advanced signaling pathways was based on conservation and selective “retrofitting” of pre-existing enzyme activities. This is consistent with observations that support the recruitment of enzymatically synthesized tetrahydrobiopterin (BH4), which is a cofactor for tyrosine hydroxylase, the enzyme responsible for dopamine production. BH4 is also an electron donor involved in the production of nitric oxide (NO). The links that coordinate BH4-mediated NO and catecholaminergic-mediated processes provide these systems with the capacity to regulate numerous downstream signaling pathways. We hypothesize that the evolution of catecholamine signaling pathways in animal species depends on the acquisition of a mobile lifestyle and motivationally driven feeding, sexual, and self-protective responses
    corecore