4,410 research outputs found

    The Effects Of Student Response Systems On Performance And Satisfaction: An Investigation In A Tax Accounting Class

    Get PDF
    Does the use of student response systems (clickers) in the classroom increase student performance on exams?  Do students perceive a benefit to using clickers in the classroom?  This study investigates the effect of student response systems on accounting students’ learning outcome and perceived satisfaction.  Results show that, though the use of clickers may not always help students do better on exams, clickers are a useful pedagogical tool that can help students pay attention in class and be more involved in a learning friendly environment

    Hyperparameter Learning for Conditional Kernel Mean Embeddings with Rademacher Complexity Bounds

    Full text link
    Conditional kernel mean embeddings are nonparametric models that encode conditional expectations in a reproducing kernel Hilbert space. While they provide a flexible and powerful framework for probabilistic inference, their performance is highly dependent on the choice of kernel and regularization hyperparameters. Nevertheless, current hyperparameter tuning methods predominantly rely on expensive cross validation or heuristics that is not optimized for the inference task. For conditional kernel mean embeddings with categorical targets and arbitrary inputs, we propose a hyperparameter learning framework based on Rademacher complexity bounds to prevent overfitting by balancing data fit against model complexity. Our approach only requires batch updates, allowing scalable kernel hyperparameter tuning without invoking kernel approximations. Experiments demonstrate that our learning framework outperforms competing methods, and can be further extended to incorporate and learn deep neural network weights to improve generalization.Comment: Best Student Machine Learning Paper Award Winner at ECML-PKDD 2018 (European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases

    System FC with Explicit Kind Equality (extended version)

    Get PDF
    System FC, the core language of the Glasgow Haskell Compiler, is an explicitly-typed variant of System F with first-class type equality proofs called coercions. This extensible proof system forms the foundation for type system extensions such as type families (type- level functions) and Generalized Algebraic Datatypes (GADTs). Such features, in conjunction with kind polymorphism and datatype promotion, support expressive compile-time reasoning. However, the core language lacks explicit kind equality proofs. As a result, type-level computation does not have access to kind- level functions or promoted GADTs, the type-level analogues to expression-level features that have been so useful. In this paper, we eliminate such discrepancies by introducing kind equalities to System FC. Our approach is based on dependent type systems with heterogeneous equality and the “Type-in-Type” axiom, yet it preserves the metatheoretic properties of FC. In particular, type checking is simple, decidable and syntax directed. We prove the preservation and progress theorems for the extended language

    System FC with Explicit Kind Equality

    Get PDF
    System FC, the core language of the Glasgow Haskell Compiler, is an explicitly-typed variant of System F with first-class type equality proofs called coercions. This extensible proof system forms the foundation for type system extensions such as type families (type- level functions) and Generalized Algebraic Datatypes (GADTs). Such features, in conjunction with kind polymorphism and datatype promotion, support expressive compile-time reasoning. However, the core language lacks explicit kind equality proofs. As a result, type-level computation does not have access to kind- level functions or promoted GADTs, the type-level analogues to expression-level features that have been so useful. In this paper, we eliminate such discrepancies by introducing kind equalities to System FC. Our approach is based on dependent type systems with heterogeneous equality and the “Type-in-Type” axiom, yet it preserves the metatheoretic properties of FC. In particular, type checking is simple, decidable and syntax directed. We prove the preservation and progress theorems for the extended language

    Business Students Perception Of University Library Service Quality And Satisfaction

    Get PDF
    The main purpose of this study is to examine the college students perception of library services, and to what extent the quality of library services influences students satisfaction. The findings depict the relationship between academic libraries and their users in todays digital world and identify critical factors that may sustain a viable library-user relationship on campus

    Metrology Camera System of Prime Focus Spectrograph for Subaru Telescope

    Get PDF
    The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. PFS will cover a 1.3 degree diameter field with 2394 fibers to complement the imaging capabilities of Hyper SuprimeCam. To retain high throughput, the final positioning accuracy between the fibers and observing targets of PFS is required to be less than 10um. The metrology camera system (MCS) serves as the optical encoder of the fiber motors for the configuring of fibers. MCS provides the fiber positions within a 5um error over the 45 cm focal plane. The information from MCS will be fed into the fiber positioner control system for the closed loop control. MCS will be located at the Cassegrain focus of Subaru telescope in order to to cover the whole focal plane with one 50M pixel Canon CMOS camera. It is a 380mm Schmidt type telescope which generates a uniform spot size with a 10 micron FWHM across the field for reasonable sampling of PSF. Carbon fiber tubes are used to provide a stable structure over the operating conditions without focus adjustments. The CMOS sensor can be read in 0.8s to reduce the overhead for the fiber configuration. The positions of all fibers can be obtained within 0.5s after the readout of the frame. This enables the overall fiber configuration to be less than 2 minutes. MCS will be installed inside a standard Subaru Cassgrain Box. All components that generate heat are located inside a glycol cooled cabinet to reduce the possible image motion due to heat. The optics and camera for MCS have been delivered and tested. The mechanical parts and supporting structure are ready as of spring 2016. The integration of MCS will start in the summer of 2016.Comment: 11 pages, 15 figures. SPIE proceeding. arXiv admin note: text overlap with arXiv:1408.287

    Flaw investigation in a multi-layered, multi-material composite: Using air-coupled ultrasonic resonance imaging

    Get PDF
    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite

    Limitations of symmetry in FE modeling: A comparison of fem and air-coupled resonance imaging

    Get PDF
    It has long been an accepted practice to use symmetry in Finite Element Modeling. Whenever modeling a large structure, we turn to symmetry in order to significantly reduce the model size and computation time. But is symmetry always the solution to long computation times, and is it always accurate? This study is aimed at modeling a whole ceramic tile and several possible symmetric models under several different loading cases and comparing them to each other and Air-Coupled Ultrasonic scans to determine if the Finite Element Models can accurately predict the vibrational resonance patterns. The reason for the accuracy or inaccuracy will also be examined. The understanding of the limitations of using symmetry to model large structures will be very useful in all future modeling

    Flaw detection in a multi-material multi-layered composite: Using FEM and air-coupled UT

    Get PDF
    Ceramic tiles are the main ingredient of a multi‐layer multi‐material composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. This study is aimed at modeling the vibration modes of the tiles and the composite lay‐up with finite element analysis and comparing the results with the resonance modes observed in air‐coupled ultrasonic excitation of the tiles and armor samples. Defects in the tile, during manufacturing and∕or after usage, are expected to change the resonance modes. The comparison of a pristine tile∕lay‐up and a defective tile∕lay‐up will thus be a quantitative damage metric. The understanding of the vibration behavior of the tile, both by itself and in the composite lay‐up, can provide useful guidance to the nondestructive evaluation of armor panels containing ceramic tiles
    corecore