68 research outputs found

    n-Channel Asymmetric Multiple-Description Lattice Vector Quantization

    Full text link
    We present analytical expressions for optimal entropy-constrained multiple-description lattice vector quantizers which, under high-resolutions assumptions, minimize the expected distortion for given packet-loss probabilities. We consider the asymmetric case where packet-loss probabilities and side entropies are allowed to be unequal and find optimal quantizers for any number of descriptions in any dimension. We show that the normalized second moments of the side-quantizers are given by that of an LL-dimensional sphere independent of the choice of lattices. Furthermore, we show that the optimal bit-distribution among the descriptions is not unique. In fact, within certain limits, bits can be arbitrarily distributed.Comment: To appear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    Privacy-Preserving Distributed Optimization via Subspace Perturbation: A General Framework

    Get PDF
    As the modern world becomes increasingly digitized and interconnected, distributed signal processing has proven to be effective in processing its large volume of data. However, a main challenge limiting the broad use of distributed signal processing techniques is the issue of privacy in handling sensitive data. To address this privacy issue, we propose a novel yet general subspace perturbation method for privacy-preserving distributed optimization, which allows each node to obtain the desired solution while protecting its private data. In particular, we show that the dual variables introduced in each distributed optimizer will not converge in a certain subspace determined by the graph topology. Additionally, the optimization variable is ensured to converge to the desired solution, because it is orthogonal to this non-convergent subspace. We therefore propose to insert noise in the non-convergent subspace through the dual variable such that the private data are protected, and the accuracy of the desired solution is completely unaffected. Moreover, the proposed method is shown to be secure under two widely-used adversary models: passive and eavesdropping. Furthermore, we consider several distributed optimizers such as ADMM and PDMM to demonstrate the general applicability of the proposed method. Finally, we test the performance through a set of applications. Numerical tests indicate that the proposed method is superior to existing methods in terms of several parameters like estimated accuracy, privacy level, communication cost and convergence rate

    Distributed Optimisation with Linear Equality and Inequality Constraints using PDMM

    Full text link
    In this paper, we consider the problem of distributed optimisation of a separable convex cost function over a graph, where every edge and node in the graph could carry both linear equality and/or inequality constraints. We show how to modify the primal-dual method of multipliers (PDMM), originally designed for linear equality constraints, such that it can handle inequality constraints as well. In contrast to most existing algorithms for optimisation with inequality constraints, the proposed algorithm does not need any slack variables. Using convex analysis, monotone operator theory and fixed-point theory, we show how to derive the update equations of the modified PDMM algorithm by applying Peaceman-Rachford splitting to the monotonic inclusion related to the extended dual problem. To incorporate the inequality constraints, we impose a non-negativity constraint on the associated dual variables. This additional constraint results in the introduction of a reflection operator to model the data exchange in the network, instead of a permutation operator as derived for equality constraint PDMM. Convergence for both synchronous and stochastic update schemes of PDMM are provided. The latter includes asynchronous update schemes and update schemes with transmission losses.Comment: 9 page

    A Low-Cost Robust Distributed Linearly Constrained Beamformer for Wireless Acoustic Sensor Networks with Arbitrary Topology

    Full text link
    We propose a new robust distributed linearly constrained beamformer which utilizes a set of linear equality constraints to reduce the cross power spectral density matrix to a block-diagonal form. The proposed beamformer has a convenient objective function for use in arbitrary distributed network topologies while having identical performance to a centralized implementation. Moreover, the new optimization problem is robust to relative acoustic transfer function (RATF) estimation errors and to target activity detection (TAD) errors. Two variants of the proposed beamformer are presented and evaluated in the context of multi-microphone speech enhancement in a wireless acoustic sensor network, and are compared with other state-of-the-art distributed beamformers in terms of communication costs and robustness to RATF estimation errors and TAD errors

    n-Channel Asymmetric Entropy-Constrained Multiple-Description Lattice Vector Quantization

    Get PDF
    This paper is about the design and analysis of an index-assignment (IA) based multiple-description coding scheme for the n-channel asymmetric case. We use entropy constrained lattice vector quantization and restrict attention to simple reconstruction functions, which are given by the inverse IA function when all descriptions are received or otherwise by a weighted average of the received descriptions. We consider smooth sources with finite differential entropy rate and MSE fidelity criterion. As in previous designs, our construction is based on nested lattices which are combined through a single IA function. The results are exact under high-resolution conditions and asymptotically as the nesting ratios of the lattices approach infinity. For any n, the design is asymptotically optimal within the class of IA-based schemes. Moreover, in the case of two descriptions and finite lattice vector dimensions greater than one, the performance is strictly better than that of existing designs. In the case of three descriptions, we show that in the limit of large lattice vector dimensions, points on the inner bound of Pradhan et al. can be achieved. Furthermore, for three descriptions and finite lattice vector dimensions, we show that the IA-based approach yields, in the symmetric case, a smaller rate loss than the recently proposed source-splitting approach.Comment: 49 pages, 4 figures. Accepted for publication in IEEE Transactions on Information Theory, 201
    • …
    corecore